Abstract
Oxygen vacancy (V O ) engineering is an effective method to tune the photoelectrochemical (PEC) performance, but the influence of V O on photoelectrodes is not well understood. Using hematite as a prototype, we herein report that V O functions in a more complicated way in PEC process than previously reported. Through a comprehensive analysis of the key charge transfer and surface reaction steps in PEC processes on a hematite photoanode, we clarify that V O can facilitate surface electrocatalytic processes while leading to severe interfacial recombination at the semiconductor/electrolyte (S-E) interface, in addition to the well-reported improvements in bulk conductivity. The improved bulk conductivity and surface catalysis are beneficial for bulk charge transfer and surface charge consumption while interfacial charge transfer deteriorates because of recombination through V O -induced trap states at the S-E interface.
Original language | English |
---|---|
Pages (from-to) | 1030-1034 |
Number of pages | 5 |
Journal | Angewandte Chemie - International Edition |
Volume | 58 |
Issue number | 4 |
DOIs | |
State | Published - 21 Jan 2019 |
Externally published | Yes |
Keywords
- charge recombination
- charge transfer
- interfaces
- oxygen vacancies
- surface reactions