TY - JOUR
T1 - Tunable excitonic properties in two-dimensional heterostructures based on solution-processed PbI2 flakes
AU - Huang, Zhen
AU - Sun, Yan
AU - Zhang, Zhe
AU - Zhou, Zishu
AU - Liu, Bowen
AU - Zhong, Jingxian
AU - Zhang, Wei
AU - Ouyang, Gang
AU - Zhang, Junran
AU - Wang, Lin
AU - Huang, Wei
N1 - Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - We investigate the manifestations of band structure engineering in few-layer PbI2-based heterostructures by probing their tunable optical properties. First, we have successfully prepared atomically thin flakes from PbI2 solution by two distinct approaches. A drop-casting of PbI2 solution onto various substrates followed by a simple heating process yields abundant flakes with different thickness and regular shape. Mechanical exfoliation of PbI2 bulk crystals, obtained from a low-temperature recrystallization process of PbI2 solution, also gives ultrathin PbI2 flakes of high quality. Moreover, these PbI2 flakes are employed to construct various van de Waals heterostructures. A significant enhancement of photoluminescence in MoSe2 interfaced with PbI2 was observed at different laser excitation intensity, due to the forming of type-I band alignment. Type-I band alignment can also be investigated in MoS2/PbI2 heterostructure, while type-II band alignment is built-in WSe2/PbI2 heterostructure. These results demonstrate that the strong interfacial coupling between PbI2 and other two-dimensional semiconductors can modulate their band alignment, and as a result, the exciton properties noticeably, which provides new insights of building a designer heterostructure device at the atomic level.
AB - We investigate the manifestations of band structure engineering in few-layer PbI2-based heterostructures by probing their tunable optical properties. First, we have successfully prepared atomically thin flakes from PbI2 solution by two distinct approaches. A drop-casting of PbI2 solution onto various substrates followed by a simple heating process yields abundant flakes with different thickness and regular shape. Mechanical exfoliation of PbI2 bulk crystals, obtained from a low-temperature recrystallization process of PbI2 solution, also gives ultrathin PbI2 flakes of high quality. Moreover, these PbI2 flakes are employed to construct various van de Waals heterostructures. A significant enhancement of photoluminescence in MoSe2 interfaced with PbI2 was observed at different laser excitation intensity, due to the forming of type-I band alignment. Type-I band alignment can also be investigated in MoS2/PbI2 heterostructure, while type-II band alignment is built-in WSe2/PbI2 heterostructure. These results demonstrate that the strong interfacial coupling between PbI2 and other two-dimensional semiconductors can modulate their band alignment, and as a result, the exciton properties noticeably, which provides new insights of building a designer heterostructure device at the atomic level.
UR - http://www.scopus.com/inward/record.url?scp=85084357971&partnerID=8YFLogxK
U2 - 10.1007/s10853-020-04735-y
DO - 10.1007/s10853-020-04735-y
M3 - 文章
AN - SCOPUS:85084357971
SN - 0022-2461
VL - 55
SP - 10656
EP - 10667
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 24
ER -