Transferable multi-model ensemble for benign-malignant lung nodule classification on chest CT

Yutong Xie, Yong Xia, Jianpeng Zhang, David Dagan Feng, Michael Fulham, Weidong Cai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

64 Scopus citations

Abstract

The classification of benign versus malignant lung nodules using chest CT plays a pivotal role in the early detection of lung cancer and this early detection has the best chance of cure. Although deep learning is now the most successful solution for image classification problems, it requires a myriad number of training data, which are not usually readily available for most routine medical imaging applications. In this paper, we propose the transferable multi-model ensemble (TMME) algorithm to separate malignant from benign lung nodules using limited chest CT data. This algorithm transfers the image representation abilities of three ResNet-50 models, which were pre-trained on the ImageNet database, to characterize the overall appearance, heterogeneity of voxel values and heterogeneity of shape of lung nodules, respectively, and jointly utilizes them to classify lung nodules with an adaptive weighting scheme learned during the error back propagation. Experimental results on the benchmark LIDC-IDRI dataset show that our proposed TMME algorithm achieves a lung nodule classification accuracy of 93.40%, which is markedly higher than the accuracy of seven state-of-the-art approaches.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
EditorsLena Maier-Hein, Alfred Franz, Pierre Jannin, Simon Duchesne, Maxime Descoteaux, D. Louis Collins
PublisherSpringer Verlag
Pages656-664
Number of pages9
ISBN (Print)9783319661780
DOIs
StatePublished - 2017
Event20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 11 Sep 201713 Sep 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10435 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period11/09/1713/09/17

Keywords

  • Computed tomography (CT)
  • Deep learning
  • Ensemble learning
  • Lung nodule classification

Fingerprint

Dive into the research topics of 'Transferable multi-model ensemble for benign-malignant lung nodule classification on chest CT'. Together they form a unique fingerprint.

Cite this