TRA-ACGAN: A motor bearing fault diagnosis model based on an auxiliary classifier generative adversarial network and transformer network

Zhaoyang Fu, Zheng Liu, Shuangrui Ping, Weilin Li, Jinglin Liu

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Motor bearing fault diagnosis is essential to guarantee production efficiency and avoid catastrophic accidents. Deep learning-based methods have been developed and widely used for fault diagnosis, and these methods have proven to be very effective in accurately diagnosing bearing faults. In this paper, study the application of generative adversarial networks (GANs) in motor bearing fault diagnosis to address the practical issue of insufficient fault data in industrial testing. Focus on the auxiliary classifier generative adversarial network (ACGAN), and the data expansion is carried out for small datasets. This paper present a novel transformer network and auxiliary classifier generative adversarial network (TRA-ACGAN) for motor bearing fault diagnosis, where the TRA-ACGAN combines an ACGAN with a transformer network to avoid the traditional iterative and convolutional structures. The attention mechanism is fully utilized to extract more effective features, and the dual-task coupling problem encountered in classical ACGANs is avoided. Experimental results with the CWRU dataset and the PU dataset in the field of motor bearing fault diagnosis demonstrate the suitability and superiority of the TRA-ACGAN.

Original languageEnglish
Pages (from-to)381-393
Number of pages13
JournalISA Transactions
Volume149
DOIs
StatePublished - Jun 2024

Keywords

  • Fault diagnosis
  • Generative adversarial network
  • Motor bearing
  • Vision transformer network

Fingerprint

Dive into the research topics of 'TRA-ACGAN: A motor bearing fault diagnosis model based on an auxiliary classifier generative adversarial network and transformer network'. Together they form a unique fingerprint.

Cite this