TY - JOUR
T1 - Total flavonoids of Drynariae rhizoma prevent bone loss induced by Hindlimb unloading in Rats
AU - Song, Shuanghong
AU - Gao, Ziyang
AU - Lei, Xujun
AU - Niu, Yinbo
AU - Zhang, Yuan
AU - Li, Cuiqin
AU - Lu, Yi
AU - Wang, Zhezhi
AU - Shang, Peng
N1 - Publisher Copyright:
© 2017 by the authors.
PY - 2017/7
Y1 - 2017/7
N2 - Drynariae Rhizoma is a kidney-tonifying herb that has a long history in clinical practice for the treatment of bone fractures and joint diseases in China. Flavonoids are considered to be its major active ingredients and are reported to ease bone loss in ovariectomized rats. However, the beneficial effects of the total flavonoids of Drynariae Rhizoma on osteoporosis caused by microgravity or mechanical inactivity remain unknown. This study assessed the effects of total Drynariae Rhizoma flavonoids (DRTF, Qihuang, Beijing, China, national medicine permit No. Z20030007, number of production: 04080081, content of DRTF ≥80%) against bone loss induced by simulated microgravity. A hindlimb unloading tail-suspended rat model was established to determine the effect of DRTF on bone mineral density (BMD), biomechanical strength and trabecular bone microarchitecture. Twenty-eight male Sprague-Dawley rats were divided into four groups: the baseline, control, hindlimb unloading with vehicle (HLU), and hindlimb unloading treated with DRTF (HLU-DRTF, 75 mg/kg/day) groups. Oral DRTF was administered for 4 weeks. The underlying mechanisms of the DRTF actions on disuse-induced osteoporosis are discussed. The results showed that DRTF treatment significantly increased the BMD and mechanical strength of tail-suspended rats. Enhanced bone turnover markers with HLU treatment were attenuated by DRTF administration. Deterioration of trabecular bone induced by HLU was prevented through elevated bone volume/tissue volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) and decreased trabecular separation (Tb. Sp). The present study provides the first evidence that DRTF prevents bone loss induced by HLU treatment, indicating its potential application in the treatment of disuse-induced osteoporosis.
AB - Drynariae Rhizoma is a kidney-tonifying herb that has a long history in clinical practice for the treatment of bone fractures and joint diseases in China. Flavonoids are considered to be its major active ingredients and are reported to ease bone loss in ovariectomized rats. However, the beneficial effects of the total flavonoids of Drynariae Rhizoma on osteoporosis caused by microgravity or mechanical inactivity remain unknown. This study assessed the effects of total Drynariae Rhizoma flavonoids (DRTF, Qihuang, Beijing, China, national medicine permit No. Z20030007, number of production: 04080081, content of DRTF ≥80%) against bone loss induced by simulated microgravity. A hindlimb unloading tail-suspended rat model was established to determine the effect of DRTF on bone mineral density (BMD), biomechanical strength and trabecular bone microarchitecture. Twenty-eight male Sprague-Dawley rats were divided into four groups: the baseline, control, hindlimb unloading with vehicle (HLU), and hindlimb unloading treated with DRTF (HLU-DRTF, 75 mg/kg/day) groups. Oral DRTF was administered for 4 weeks. The underlying mechanisms of the DRTF actions on disuse-induced osteoporosis are discussed. The results showed that DRTF treatment significantly increased the BMD and mechanical strength of tail-suspended rats. Enhanced bone turnover markers with HLU treatment were attenuated by DRTF administration. Deterioration of trabecular bone induced by HLU was prevented through elevated bone volume/tissue volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) and decreased trabecular separation (Tb. Sp). The present study provides the first evidence that DRTF prevents bone loss induced by HLU treatment, indicating its potential application in the treatment of disuse-induced osteoporosis.
KW - Drynariae Rhizoma
KW - Flavonoids
KW - Hindlimb unloading
KW - Osteoporosis
KW - Traditional Chinese medicine
UR - http://www.scopus.com/inward/record.url?scp=85021662183&partnerID=8YFLogxK
U2 - 10.3390/molecules22071033
DO - 10.3390/molecules22071033
M3 - 文章
C2 - 28640230
AN - SCOPUS:85021662183
SN - 1420-3049
VL - 22
JO - Molecules
JF - Molecules
IS - 7
M1 - 1033
ER -