Tolerating Data Missing in Breast Cancer Diagnosis from Clinical Ultrasound Reports via Knowledge Graph Inference

Jianing Xi, Liping Ye, Qinghua Huang, Xuelong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

24 Scopus citations

Abstract

Medical diagnosis through artificial intelligence has been drawing increasing attention currently. For breast lesions, the clinical ultrasound reports are the most commonly used data in the diagnosis of breast cancer. Nevertheless, the input reports always encounter the inevitable issue of data missing. Unfortunately, despite the efforts made in previous approaches that made progress on tackling data imprecision, nearly all of these approaches cannot accept inputs with data missing. A common way to alleviate the data missing issue is to fill the missing values with artificial data. However, the data filling strategy actually brings in additional noises that do not exist in the raw data. Inspired by the advantage of open world assumption, we regard the missing data in clinical ultrasound reports as non-observed terms of facts, and propose a Knowledge Graph embedding based model KGSeD with the capability of tolerating data missing, which can successfully circumvent the pollution caused by data filling. Our KGSeD is designed via an encoder-decoder framework, where the encoder incorporates structural information of the graph via embedding, and the decoder diagnose patients by inferring their links to clinical outcomes. Comparative experiments show that KGSeD achieves noticeable diagnosis performances. When data missing occurred, KGSeD yields the most stable performance over those of existing approaches, showing better tolerance to data missing.

Original languageEnglish
Title of host publicationKDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages3756-3764
Number of pages9
ISBN (Electronic)9781450383325
DOIs
StatePublished - 14 Aug 2021
Event27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021 - Virtual, Online, Singapore
Duration: 14 Aug 202118 Aug 2021

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Country/TerritorySingapore
CityVirtual, Online
Period14/08/2118/08/21

Keywords

  • computer-aided diagnosis
  • knowledge graph
  • medical ultrasound data
  • open world assumption

Fingerprint

Dive into the research topics of 'Tolerating Data Missing in Breast Cancer Diagnosis from Clinical Ultrasound Reports via Knowledge Graph Inference'. Together they form a unique fingerprint.

Cite this