Time-domain neural network approach for speech bandwidth extension

Xiang Hao, Chenglin Xu, Nana Hou, Lei Xie, Eng Siong Chng, Haizhou Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

In this paper, we study the time-domain neural network approach for speech bandwidth extension. We propose a network architecture, named multi-scale fusion neural network (MfNet), that gradually restores the low-frequency signal and predicts the high-frequency signal through the exchange of information across different scale representations. We propose a training scheme to optimize the network with a combination of perceptual loss and time-domain adversarial loss. Experiments show the proposed multi-scale fusion network consistently outperforms the competing methods in terms of perceptual evaluation of speech quality (PESQ), signal to distortion rate (SDR), signal to noise ratio (SNR), log-spectral distance (LSD) and word error rate (WER). More promisingly, the multi-scale fusion network requires only 10% of the parameters of the time-domain reference baseline.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages866-870
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: 4 May 20208 May 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period4/05/208/05/20

Keywords

  • Deep learning
  • Multi-scale fusion
  • Neural networks
  • Speech bandwidth extension

Fingerprint

Dive into the research topics of 'Time-domain neural network approach for speech bandwidth extension'. Together they form a unique fingerprint.

Cite this