TY - JOUR
T1 - Thermophysical properties of undercooled liquid Ni-Zr alloys
T2 - Melting temperature, density, excess volume and thermal expansion
AU - Lü, P.
AU - Zhou, K.
AU - Cai, X.
AU - Wang, H. P.
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - The thermophysical properties of undercooled liquid Ni-Zr binary alloys were investigated by molecular dynamics simulation combined with a Finnis-Sinclair (F-S) potential, including melting temperature, density, excess volume and thermal expansion. The melting temperatures were obtained by the evolution of crystal-liquid-crystal sandwich model, where there exist rather low differences of 4.14% for Ni77.8Zr22.2 alloy and 3.98% for Ni50Zr50 alloy when they were compared with the reported values. The calculated densities of liquid Ni-Zr alloys increase with the decrease of temperature, which agree well with the reported experimental values except for the Ni-rich composition alloys. Thus, the reported experimental density of liquid Ni77.8Zr22.2 alloy was employed to re-gauge the current F-S potential and the densities of the Ni-rich composition alloys were recalculated by the re-gauged potential. This binary liquid alloy system shows a negative excess volume, which could be attributed to the strong attractive interactions between Ni and Zr atoms. It is indicated that the Ni-Zr alloy system seriously deviates from the ideal solution, and the accuracy would be very low if the thermophysical properties are estimated by Neumann-Kopp rule. Meanwhile, the thermal expansion coefficients were also derived on the basis of the density data, which increase with the enhancement of temperature except for liquid Ni77.8Zr22.2 alloy.
AB - The thermophysical properties of undercooled liquid Ni-Zr binary alloys were investigated by molecular dynamics simulation combined with a Finnis-Sinclair (F-S) potential, including melting temperature, density, excess volume and thermal expansion. The melting temperatures were obtained by the evolution of crystal-liquid-crystal sandwich model, where there exist rather low differences of 4.14% for Ni77.8Zr22.2 alloy and 3.98% for Ni50Zr50 alloy when they were compared with the reported values. The calculated densities of liquid Ni-Zr alloys increase with the decrease of temperature, which agree well with the reported experimental values except for the Ni-rich composition alloys. Thus, the reported experimental density of liquid Ni77.8Zr22.2 alloy was employed to re-gauge the current F-S potential and the densities of the Ni-rich composition alloys were recalculated by the re-gauged potential. This binary liquid alloy system shows a negative excess volume, which could be attributed to the strong attractive interactions between Ni and Zr atoms. It is indicated that the Ni-Zr alloy system seriously deviates from the ideal solution, and the accuracy would be very low if the thermophysical properties are estimated by Neumann-Kopp rule. Meanwhile, the thermal expansion coefficients were also derived on the basis of the density data, which increase with the enhancement of temperature except for liquid Ni77.8Zr22.2 alloy.
KW - Liquid alloys
KW - Ni-Zr alloys
KW - Thermophysical properties
KW - Undercooling
UR - http://www.scopus.com/inward/record.url?scp=85017435727&partnerID=8YFLogxK
U2 - 10.1016/j.commatsci.2017.04.003
DO - 10.1016/j.commatsci.2017.04.003
M3 - 文章
AN - SCOPUS:85017435727
SN - 0927-0256
VL - 135
SP - 22
EP - 28
JO - Computational Materials Science
JF - Computational Materials Science
ER -