Abstract
Lithium-carbon dioxide (Li-CO2) and Li-air batteries hold great potential in achieving carbon neutral given their ultrahigh theoretical energy density and eco-friendly features. However, these Li-gas batteries still suffer from low discharging-charging rate and poor cycling life due to sluggish decomposition kinetics of discharge products especially Li2CO3. Here we report the theory-guided design and preparation of unconventional phase metal heteronanostructures as cathode catalysts for high-performance Li-CO2/air batteries. The assembled Li-CO2 cells with unconventional phase 4H/face-centered cubic (fcc) ruthenium-nickel heteronanostructures deliver a narrow discharge-charge gap of 0.65 V, excellent rate capability and long-term cycling stability over 200 cycles at 250 mA g−1. The constructed Li-air batteries can steadily run for above 150 cycles in ambient air. Electrochemical mechanism studies reveal that 4H/fcc Ru−Ni with high-electroactivity facets can boost redox reaction kinetics and tune discharge reactions towards Li2C2O4 path, alleviating electrolyte/catalyst failures induced by the aggressive singlet oxygen from solo decomposition of Li2CO3.
Original language | English |
---|---|
Article number | e202416947 |
Journal | Angewandte Chemie - International Edition |
Volume | 64 |
Issue number | 5 |
DOIs | |
State | Published - 27 Jan 2025 |
Keywords
- Electrocatalysis
- Electrochemical mechanism
- Li-CO battery
- Metal heteronanostructures
- Unconventional phase