Abstract
Three kinds of novel carboxyl modification tubular carbon nanofibers (CMTCFs) and MnO2 composites materials (CMTCFs/MnO2) are prepared by combining hyper-crosslinking, liquid phase oxidation and hydrothermal technology. The complex morphology and crystal phase of MnO2 in CMTCFs/MnO2 are effectively regulated by adjusting the hydrothermal reaction time. The δ-MnO2 nanosheet-wrapped CMTCFs (CMTCFs@MNS) are used as anode and compared with the other two CMTCFs/MnO2. Electrochemical analysis shows that CMTCFs@MNS electrode exhibits a large reversible capacity of 1497.1 mAh g−1 after 300 cycles at 1000 mA g−1 and a long cycling reversible capacity of 400.8 mAh g−1 can be maintained after 1000 cycles at 10 000 mA g−1. CMTCFs@MNS manifests an average reversible capacity of 256.32 mAh g−1 at 10 000 mA g−1 after twelve changes in current density. In addition, the structural superiority of CMTCFs@MNS electrode is clarified by characterizing the microscopic morphology and crystal phase of the electrode after electrochemical performance test.
Original language | English |
---|---|
Pages (from-to) | 1402-1414 |
Number of pages | 13 |
Journal | Journal of the American Ceramic Society |
Volume | 104 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2021 |
Keywords
- anode electrode
- carboxyl modification
- lithium-ion batteries
- manganese dioxide
- tubular carbon nanofibers