Systems pharmacology dissection of action mechanisms of Dipsaci Radix for osteoporosis

Wenjuan Zhang, Kaiyue Xue, Yongguang Gao, Ying Huai, Wei Wang, Zhiping Miao, Kai Dang, Shanfeng Jiang, Airong Qian

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Aims: Osteoporosis (OP) is a systemic metabolic bone disease characterized by bone mass decrease and microstructural degradation, which may increase the risk of bone fracture and leading to high morbidity. Dipsaci Radix (DR), one typical traditional Chinese medicine (TCM), which has been applied in the treatment of OP with good therapeutic effects and few side effects. However, the underlying molecular mechanisms of DR to treat OP have not been fully elucidated. In this study, we aim to dissect the molecular mechanism of DR in the treatment of OP. Materials and methods: A systems pharmacology approach was employed to comprehensively dissect the action mechanisms of DR for the treatment of OP. Key findings: 10 compounds were screened out as the potential active ingredients with excellent biological activity based on in silico ADME (absorption, distribution, metabolism and excretion) prediction model. Then, 36 key protein targets of 6 compounds were identified by systems drug targeting model (SysDT) and they were involved in several biological processes, such as osteoclast differentiation, osteoblast differentiation and anti-inflammation. The target-pathway network indicated that targets are mainly mapped in multiple signaling pathways, i.e., MAPK, Tumor necrosis factor α (TNF-α), NF-κb and Toll-like receptor pathways. The in vitro results indicated that the compounds ursolic acid and beta-sitosterol effectively inhibited the osteoclast differentiation. Significance: These results systematically dissected that DR exhibits the therapeutic effects of OP by the regulation of immune system-related pathways, which provide novel perspective to drug development of OP.

Original languageEnglish
Article number116820
JournalLife Sciences
Volume235
DOIs
StatePublished - 15 Oct 2019

Keywords

  • Immune regulation
  • Multi-targets
  • Osteoporosis
  • Systems pharmacology

Fingerprint

Dive into the research topics of 'Systems pharmacology dissection of action mechanisms of Dipsaci Radix for osteoporosis'. Together they form a unique fingerprint.

Cite this