TY - JOUR
T1 - Synthesis of porous carbon materials derived from laminaria japonica via simple carbonization and activation for supercapacitors
AU - Cheng, Youliang
AU - Wu, Linlin
AU - Fang, Changqing
AU - Li, Tiehu
AU - Chen, Jing
AU - Yang, Mannan
AU - Zhang, Qingling
N1 - Publisher Copyright:
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PY - 2020
Y1 - 2020
N2 - High-performance electrode materials derived from biomass for supercapacitors have been considered as an effective solution to the problems of the fossil energy shortage and the environment deterioration. Most importantly, the specific capacitance, rate performance and cyclic stability for these electrode materials are focused issues. Here, we prepare a new type porous carbon using laminaria japonica as the carbon source via a simple carbonization and activation method, and investigate its morphology, structure and electrochemical properties. The results show that the porous carbon materials exhibit amorphous structure, high specific surface area with abundant pores and oxygen functional groups. The specific capacitance of the porous carbon with a large specific surface area of 1902.42 m2 g−1 and total pore volume of 1.26 cm3 g−1 can reach to 192 F g−1 at 0.1 A g−1. Furthermore, this porous carbon possesses a specific capacitance of 120 F g−1 at 10 A g−1, nearly 100% capacitance retention rate and coulomb efficiency after 10000 cycles at 1 A g−1, indicating excellent rate performance and cyclic stability. Therefore, as-prepared porous carbons derived from laminaria japonica with low cost, easy availability, high regeneration ability and sustainability have a promising application as the electrode materials for supercapacitors.
AB - High-performance electrode materials derived from biomass for supercapacitors have been considered as an effective solution to the problems of the fossil energy shortage and the environment deterioration. Most importantly, the specific capacitance, rate performance and cyclic stability for these electrode materials are focused issues. Here, we prepare a new type porous carbon using laminaria japonica as the carbon source via a simple carbonization and activation method, and investigate its morphology, structure and electrochemical properties. The results show that the porous carbon materials exhibit amorphous structure, high specific surface area with abundant pores and oxygen functional groups. The specific capacitance of the porous carbon with a large specific surface area of 1902.42 m2 g−1 and total pore volume of 1.26 cm3 g−1 can reach to 192 F g−1 at 0.1 A g−1. Furthermore, this porous carbon possesses a specific capacitance of 120 F g−1 at 10 A g−1, nearly 100% capacitance retention rate and coulomb efficiency after 10000 cycles at 1 A g−1, indicating excellent rate performance and cyclic stability. Therefore, as-prepared porous carbons derived from laminaria japonica with low cost, easy availability, high regeneration ability and sustainability have a promising application as the electrode materials for supercapacitors.
KW - Electrode material
KW - Laminaria japonica
KW - Porous carbon
KW - Supercapacitor
UR - http://www.scopus.com/inward/record.url?scp=85081680278&partnerID=8YFLogxK
U2 - 10.1016/j.jmrt.2020.01.022
DO - 10.1016/j.jmrt.2020.01.022
M3 - 文章
AN - SCOPUS:85081680278
SN - 2238-7854
VL - 9
SP - 3261
EP - 3271
JO - Journal of Materials Research and Technology
JF - Journal of Materials Research and Technology
IS - 3
ER -