Synthesis of poly(amide-thioether) with tunable hydrophilicity via thiolactone chemistry and its application in oil-in-oil emulsions

Zhengzhou Su, Chunmei Li, Jiaojun Tan, Ying Xue, Guoxian Zhang, Yumin Yang, Qiuyu Zhang

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Oil-in-oil emulsions are ideal systems for water-sensitive reactions such as polymerizations and catalytic reactions, which has received extensive attention in recent years. The application of oil-in-oil emulsions has been developed slowly due to the limited types of surfactants and complicated synthesis process. Herein, we proposed a simple method to prepare poly(amide-thioether)-based surfactant for oil-in-oil emulsions via taking advantage of single-pot multicomponent and click characters of thiolactone chemistry. Using a combination of alkyl amine and acrylamide thiolactone, the aminolysis of thiolctone occurred first, generating thiol group in-situ, and then the generated thiol group would sequentially react with the double bonds of acrylamide to form polythioether in the presence of amine. The hydrophobicity of the surfactant could be effectively adjusted by the chain length of the alkyl amine and thus this polymer could serve as a promising surfactant for oil-in-oil emulsion. Notably, the emulsion types could be switched by changing the chain length of the alkyl amine. In addition, the effects of surfactant loading, volume ratio of oil phases, oil types on the size and stability of oil-in-oil emulsions were further investigated. It was demonstrated that the oil-in-oil emulsion stabilized by poly(amide-thioether)s kept stable after more than five months. Besides, we preliminarily explored the application of the oil-in-oil emulsion to prepare closed cell foam and porous particles via photo-initiated thiol-ene polymerization. It is believed that this super-stable oil-in-oil emulsion could offer more possibilities for highly potential water-sensitive systems.

Original languageEnglish
Pages (from-to)201-211
Number of pages11
JournalJournal of Colloid and Interface Science
Volume549
DOIs
StatePublished - 1 Aug 2019

Keywords

  • Hydrophobicity
  • Multicomponent
  • Oil-in-oil emulsion
  • Poly(amide-thioether)
  • Thiolactone

Fingerprint

Dive into the research topics of 'Synthesis of poly(amide-thioether) with tunable hydrophilicity via thiolactone chemistry and its application in oil-in-oil emulsions'. Together they form a unique fingerprint.

Cite this