TY - JOUR
T1 - Synthesis of Black g-C3N4 and Exploration of the Mechanism Underlying the Enhancement of Photocatalytic CO2 Reduction
AU - Lv, Shaokun
AU - Zhang, Jun
AU - Chen, Xiaoke
AU - Zou, Yue
AU - Chen, Qiuli
AU - Yan, Yongsheng
AU - Li, Pengxin
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/4
Y1 - 2025/4
N2 - The use of solar energy to convert CO2 into value-added chemicals is a promising sustainable development strategy. In this study, a black graphitic carbon nitride (CN-B) photocatalyst was fabricated through a single-step calcination process, employing phloxine B and urea as the precursor materials. The catalysts were characterized using TEM, XRD, FTIR, XPS and so on. The amount of prepolymer phloxine B was 25 mg, 35 mg and 45 mg, respectively, and the obtained samples were CN-B-0.025, CN-B-0.035 and CN-B-0.045. All samples were used for visible-catalyzed CO2 reduction. The experimental findings indicate that the CO evolution rate of the optimal photocatalyst CN-B-0.035 reaches 27.56 μmol gcat.−1 h−1. This value is nine-fold higher than that of pure CN, which has a CO evolution rate of 3.22 μmol gcat.−1 h−1. The excellent photocatalytic reduction performance is due to the following factors: Firstly, the exceedingly thin nanosheet structure of the catalyst enhances the velocity of the charge transfer, and transmission electron microscopy (TEM) analysis shows that the nanosheet thickness of the catalyst CN-B is significantly thinner. Secondly, the light absorption capacity of the catalyst is enhanced. The absorbance of CN-B increases significantly in the ultraviolet region and extends to the near-infrared region, as shown with UV diffuse reflection spectroscopy. Finally, the photothermal effect of CN-B causes the catalyst temperature to rise rapidly from 20 °C to 131 °C within 120 s, which further promotes photogenerated carrier separation. This research offers a novel approach to the development of photocatalysts aimed at the photothermal-assisted photocatalytic conversion of CO2.
AB - The use of solar energy to convert CO2 into value-added chemicals is a promising sustainable development strategy. In this study, a black graphitic carbon nitride (CN-B) photocatalyst was fabricated through a single-step calcination process, employing phloxine B and urea as the precursor materials. The catalysts were characterized using TEM, XRD, FTIR, XPS and so on. The amount of prepolymer phloxine B was 25 mg, 35 mg and 45 mg, respectively, and the obtained samples were CN-B-0.025, CN-B-0.035 and CN-B-0.045. All samples were used for visible-catalyzed CO2 reduction. The experimental findings indicate that the CO evolution rate of the optimal photocatalyst CN-B-0.035 reaches 27.56 μmol gcat.−1 h−1. This value is nine-fold higher than that of pure CN, which has a CO evolution rate of 3.22 μmol gcat.−1 h−1. The excellent photocatalytic reduction performance is due to the following factors: Firstly, the exceedingly thin nanosheet structure of the catalyst enhances the velocity of the charge transfer, and transmission electron microscopy (TEM) analysis shows that the nanosheet thickness of the catalyst CN-B is significantly thinner. Secondly, the light absorption capacity of the catalyst is enhanced. The absorbance of CN-B increases significantly in the ultraviolet region and extends to the near-infrared region, as shown with UV diffuse reflection spectroscopy. Finally, the photothermal effect of CN-B causes the catalyst temperature to rise rapidly from 20 °C to 131 °C within 120 s, which further promotes photogenerated carrier separation. This research offers a novel approach to the development of photocatalysts aimed at the photothermal-assisted photocatalytic conversion of CO2.
KW - black g-CN
KW - carbon dioxide reduction
KW - photocatalysis
KW - product selectivity
UR - http://www.scopus.com/inward/record.url?scp=105003536788&partnerID=8YFLogxK
U2 - 10.3390/catal15040349
DO - 10.3390/catal15040349
M3 - 文章
AN - SCOPUS:105003536788
SN - 2073-4344
VL - 15
JO - Catalysts
JF - Catalysts
IS - 4
M1 - 349
ER -