Abstract
Hybrid hollow urchin-like cobalt and copper silicate constructed by nanotubes encapsulated in graphene nanosheets composites were successfully prepared using graphene oxide as carrier and silica spheres as template, which were done through a well-known Stȍber process and a hydrothermal method. In fact, the synthesis of hybrid urchin-like silicate constructed by nanotubes through onestep hydrothermal reaction has rarely been reported.The electrochemical performances of the composites as lithium-ion battery anode materials were studiedfor the first time. As novel anode materials of Li-ion batteries, the special hollow urchin-like structure not only could facilitate the Li+ diffusion and electron transport but alsocouldaccommodate the volume variation during the conversion reactions. In addition, the introduction of graphene can make the electrical conductivity better. Graphene wrapped hollow urchin-like silicate compositespossesses superior electrochemical cycling properties. The first discharge capacity is1955.2mAh/g with a current density of 300 mA/g. The unique well-designed configuration presents a beneficial method to synthesize efficient and high performance electrode materials for advanced power applications.
Original language | English |
---|---|
Pages (from-to) | 361-370 |
Number of pages | 10 |
Journal | Electrochimica Acta |
Volume | 245 |
DOIs | |
State | Published - 10 Aug 2017 |
Keywords
- anode
- graphene
- hollow urchin-like
- lithium storage properties
- silicate