Synchronization Control for Hydraulic Motors of Boom Refueling Experimental Platform

Yaohong Qu, Qingjie He, Ziquan Yu, Zhewen Xing

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, the position synchronization control problem is investigated based on the boom refueling experimental platform. Two hydraulic motors are used to pull refueling boom by cables, but how to enhance the synchronization precision of two motors is a question needed to be considered. Firstly, motors models and geometric position relation of the platform are established based on the parameters of motors and the platform size. Next, a lot of experiments are conducted and hence, the motor dead zone and flow gain is determined through the analysis of experimental data. Besides, we also designed a dead zone compensation controller to weaken its impact on the system Then, we propose a state coordinated synchronization control law with auto disturbance rejection control. Finally, the simulation work and field test is carried out to verify the control performance of the controller. The proposed controller achieves good control performance and can satisfy the control requirements.

Original languageEnglish
Title of host publication2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538611715
DOIs
StatePublished - Aug 2018
Event2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018 - Xiamen, China
Duration: 10 Aug 201812 Aug 2018

Publication series

Name2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018

Conference

Conference2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018
Country/TerritoryChina
CityXiamen
Period10/08/1812/08/18

Keywords

  • ADRC
  • Boom refueling
  • Hydraulic motors
  • Synchronization control

Fingerprint

Dive into the research topics of 'Synchronization Control for Hydraulic Motors of Boom Refueling Experimental Platform'. Together they form a unique fingerprint.

Cite this