Study on surface roughness of milling in-situ TiB2 particle reinforced Al matrix composites

Xiao fen Liu, Wen hu Wang, Rui song Jiang, Yi feng Xiong, Kun yang Lin, Zhan fei Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.

Original languageEnglish
Title of host publicationAdvanced Materials
Subtitle of host publicationDesign, Processing, Characterization, and Applications
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859490
DOIs
StatePublished - 2019
EventASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019 - Salt Lake City, United States
Duration: 11 Nov 201914 Nov 2019

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume12

Conference

ConferenceASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019
Country/TerritoryUnited States
CitySalt Lake City
Period11/11/1914/11/19

Keywords

  • Al-MMCs
  • In-situ
  • Milling
  • Surface defects
  • Surface roughness
  • TiB particle

Fingerprint

Dive into the research topics of 'Study on surface roughness of milling in-situ TiB2 particle reinforced Al matrix composites'. Together they form a unique fingerprint.

Cite this