TY - JOUR
T1 - Study of the Shock Wave-Turbulent Boundary Layer Interaction Using a 3D von Kármán Length Scale
AU - Xu, Jing Lei
AU - Song, You Fu
AU - Zhang, Yang
AU - Bai, Jun Qiang
N1 - Publisher Copyright:
© 2017 by De Gruyter 2017.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Traditional turbulence models are initially formulated and calibrated under incompressible conditions. Thus, these models are always of low fidelity when extended to high speed, complex and compressible flows. In this work, a compressible von Kármán length scale is proposed for compressible flows considering the variable densities. The length scale is the ratio between the new vorticity and its gradient. The new length scale is actually based on phenomenological theory, which is then integrated into the KDO (turbulence Kinetic energy Dependent Only) turbulence model, arriving at a compressible model called CKDO (Compressible KDO). In the CKDO turbulence model, all the extra terms produced by compressibility are modeled as dissipation. Compression corners of 8, 16, 20 and 24 angles are studied within SST, SA, KDO and CKDO. These test cases are known as the typical shock wave-boundary layer interactions. The results show that the new length scale in CKDO is able to well capture the surface pressure and skin friction distributions. Besides, compared with the standard von Kármán length scale, the new length scale in CKDO can better capture the size and position of the separation bubble. With the increase of the corner angle, CKDO shows more prominent potential for describing compressible flows.
AB - Traditional turbulence models are initially formulated and calibrated under incompressible conditions. Thus, these models are always of low fidelity when extended to high speed, complex and compressible flows. In this work, a compressible von Kármán length scale is proposed for compressible flows considering the variable densities. The length scale is the ratio between the new vorticity and its gradient. The new length scale is actually based on phenomenological theory, which is then integrated into the KDO (turbulence Kinetic energy Dependent Only) turbulence model, arriving at a compressible model called CKDO (Compressible KDO). In the CKDO turbulence model, all the extra terms produced by compressibility are modeled as dissipation. Compression corners of 8, 16, 20 and 24 angles are studied within SST, SA, KDO and CKDO. These test cases are known as the typical shock wave-boundary layer interactions. The results show that the new length scale in CKDO is able to well capture the surface pressure and skin friction distributions. Besides, compared with the standard von Kármán length scale, the new length scale in CKDO can better capture the size and position of the separation bubble. With the increase of the corner angle, CKDO shows more prominent potential for describing compressible flows.
KW - compressibility correction
KW - shock wave-boundary layer interaction
KW - turbulence model
KW - von Kármán length scale
UR - http://www.scopus.com/inward/record.url?scp=85012203054&partnerID=8YFLogxK
U2 - 10.1515/ijnsns-2016-0018
DO - 10.1515/ijnsns-2016-0018
M3 - 文章
AN - SCOPUS:85012203054
SN - 1565-1339
VL - 18
SP - 57
EP - 66
JO - International Journal of Nonlinear Sciences and Numerical Simulation
JF - International Journal of Nonlinear Sciences and Numerical Simulation
IS - 1
ER -