TY - GEN
T1 - Study of initiator's shock-resistibility through impact using hopkinson pressure bar
AU - Deng, Qiong
AU - Li, Yulong
AU - Suo, Tao
AU - Chen, Chunlin
AU - Chang, Xingmin
PY - 2008
Y1 - 2008
N2 - This paper attempted to study the properties of Slapper detonator non-energetic elements through exerting impact on them by Hopkinson Pressure Bar and evaluating the acceleration that samples received in accordance with one-dimensional stress wave theory. The results showed that the velocity pulse width could be controlled and acceleration pulse width be improved by varying the pulse shaper material and strike bar length. And the critical acceleration causing the failure of the initiator was closely connected with acceleration pulse width as well as acceleration amplitude. When the strike bar length were 126 mm, 190 mm, 270 mm and 460 mm, the acceleration pulse width were 58 μs, 93 μs, 130 us and 160 μs, respectively, and the critical acceleration causing the failure of the initiator were about 240 000 g, 130 000 g, 74 000 g and 72 000 g, respectively. The accurateness and reliability of acceleration value was accredited to the methods of changing sampling frequency, smoothing velocity and acceleration curve, and fitting curve. The FEM analog simulation was also conducted by using the LS-DYNA finite element program. Good agreements were achieved between the acceleration curve and the simulation results.
AB - This paper attempted to study the properties of Slapper detonator non-energetic elements through exerting impact on them by Hopkinson Pressure Bar and evaluating the acceleration that samples received in accordance with one-dimensional stress wave theory. The results showed that the velocity pulse width could be controlled and acceleration pulse width be improved by varying the pulse shaper material and strike bar length. And the critical acceleration causing the failure of the initiator was closely connected with acceleration pulse width as well as acceleration amplitude. When the strike bar length were 126 mm, 190 mm, 270 mm and 460 mm, the acceleration pulse width were 58 μs, 93 μs, 130 us and 160 μs, respectively, and the critical acceleration causing the failure of the initiator were about 240 000 g, 130 000 g, 74 000 g and 72 000 g, respectively. The accurateness and reliability of acceleration value was accredited to the methods of changing sampling frequency, smoothing velocity and acceleration curve, and fitting curve. The FEM analog simulation was also conducted by using the LS-DYNA finite element program. Good agreements were achieved between the acceleration curve and the simulation results.
KW - High acceleration
KW - Hopkinson pressure bar
KW - Initiator
KW - Shock-resistibility
UR - http://www.scopus.com/inward/record.url?scp=45749126083&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/amr.33-37.401
DO - 10.4028/www.scientific.net/amr.33-37.401
M3 - 会议稿件
AN - SCOPUS:45749126083
SN - 0878493999
SN - 9780878493999
T3 - Advanced Materials Research
SP - 401
EP - 406
BT - Advances in Fracture and Materials Behavior - Selected, peer reviewed papers of the Seventh International Conference on Fracture and Strength of Solids (FEOFS2007)
PB - Trans Tech Publications
T2 - 7th International Conference on Fracture and Strength of Solids, FEOFS 2007
Y2 - 27 August 2007 through 29 August 2007
ER -