Structural transformations in single-crystalline AgPd nanoalloys from multiscale deep potential molecular dynamics

Longfei Guo, Tao Jin, Shuang Shan, Quan Tang, Zhen Li, Chongyang Wang, Junpeng Wang, Bowei Pan, Qiao Wang, Fuyi Chen

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

AgPd nanoalloys often undergo structural evolution during catalytic reactions; the mechanism underlying such restructuring remains largely unknown due to the use of oversimplified interatomic potentials in simulations. Herein, a deep-learning potential is developed for AgPd nanoalloys based on a multiscale dataset spanning from nanoclusters to bulk configurations, exhibits precise predictions of mechanical properties and formation energies with near-density functional theory accuracy, calculates the surface energies closer to experimental values compared to those obtained by Gupta potentials, and is applied to investigate the shape reconstruction of single-crystalline AgPd nanoalloys from cuboctahedron (Oh) to icosahedron (Ih) geometries. The Oh to Ih shape restructuring is thermodynamically favorable and occurs at 11 and 92 ps for Pd55@Ag254 and Ag147@Pd162 nanoalloys, respectively. During the shape reconstruction of Pd@Ag nanoalloys, concurrent surface restructuring of the (100) facet and internal multi-twinned phase change are observed with collaborative displacive characters. The presence of vacancies can influence the final product and reconstructing rate of Pd@Ag core-shell nanoalloys. The Ag outward diffusion on Ag@Pd nanoalloys is more pronounced in Ih geometry compared to Oh geometry and can be further accelerated by the Oh to Ih deformation. The deformation of single-crystalline Pd@Ag nanoalloys is characterized by a displacive transformation involving the collaborative displacement of a large number of atoms, distinguishing it from the diffusion-coupled transformation of Ag@Pd nanoalloys.

Original languageEnglish
Article number024702
JournalJournal of Chemical Physics
Volume159
Issue number2
DOIs
StatePublished - 14 Jul 2023

Fingerprint

Dive into the research topics of 'Structural transformations in single-crystalline AgPd nanoalloys from multiscale deep potential molecular dynamics'. Together they form a unique fingerprint.

Cite this