Stochastic stabilization of first-passage failure of Rayleigh oscillator under Gaussian White-Noise parametric excitations

Jiaorui Li, Wei Xu

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Stochastic stabilization of first-passage failure of Rayleigh oscillator under Gaussian White-Noise parametric excitation is studied. The equation of motion of the system is first reduced to an averaged Itô stochastic differential equation by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional reliability function of first-passage failure is established. The conditional reliability function, and the conditional probability density are obtained by solving the backward Kolmogorov equation with boundary conditions. Finally, the cost function and optimal control forces are determined by the requirements of stabilizing the system by evaluating the maximal Lyapunov exponent. The numerical results show that the procedure is effective and efficiency.

Original languageEnglish
Pages (from-to)1515-1521
Number of pages7
JournalChaos, Solitons and Fractals
Volume26
Issue number5
DOIs
StatePublished - Dec 2005

Fingerprint

Dive into the research topics of 'Stochastic stabilization of first-passage failure of Rayleigh oscillator under Gaussian White-Noise parametric excitations'. Together they form a unique fingerprint.

Cite this