Stochastic P-bifurcations of a noisy nonlinear system with fractional derivative element

Ya Hui Sun, Yong Ge Yang, Wei Xu

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Abstract: This paper investigates the stochastic P-bifurcation (SPB) of a fractionally damped oscillator subjected to additive and multiplicative Gaussian white noise. Variable transformation and the stochastic averaging technique are applied to derive the expression of probability density function (PDF) of the system response. Critical conditions of the stochastic bifurcation induced by system parameters are presented based on the change in the number of extreme points of the probability density function. Numerical results are given to show the effectiveness of the proposed approach. Stochastic P-bifurcations for additive and multiplicative noise are studied in detail according to the critical conditions. Graphic abstract: Stochastic P-bifurcation (SPB) for additive noise can be investigated by the critical conditions. SPB induced by the fractional order is described in the bifurcation plane, see Fig. a. Figure b shows that the probability density function (PDF) for (0.1, 0.005) ∈ R2 has one peak, while the PDF for (0.8, 0.005) ∈ R2 has two peaks. It implies that the change of the fractional order leads to the variation of the structure of the PDF, which indicates the occurrence of the SPB.[Figure not available: see fulltext.]

Original languageEnglish
Pages (from-to)507-515
Number of pages9
JournalActa Mechanica Sinica/Lixue Xuebao
Volume37
Issue number3
DOIs
StatePublished - Mar 2021

Keywords

  • Fractional derivative
  • Gaussian white noise
  • Stochastic P-bifurcation
  • Stochastic averaging method

Fingerprint

Dive into the research topics of 'Stochastic P-bifurcations of a noisy nonlinear system with fractional derivative element'. Together they form a unique fingerprint.

Cite this