Abstract
Achieving large-scale coupling of organic electrooxidation and the hydrogen evolution reaction, while understanding the competition between organic electrooxidation and oxygen evolution reaction (OER), is a significant challenge. In this study, using Ni3N-MoN/NF, an efficient heterojunction electrocatalyst as both anode and cathode in a 50 cm2 continuous flow reactor, we achieved a total current of ~20 A at 2.6 V. This resulted in the highest single-pass 5-hydroxymethylfurfural conversion efficiency (0.049 mmol cm−2 min−1) and gram-level production of 2,5-furandicarboxylic acid. Theoretical studies revealed that MoN accelerated *OH formation and increased its deprotonation energy barrier, leading to *OH accumulation, effectively promoting organic electrooxidation and inhibiting OER. We anticipate that our foundation in understanding the reaction mechanism and catalyst design strategy can be extended to a wider range of anodic oxidation reactions.
Original language | English |
---|---|
Article number | e18690 |
Journal | AIChE Journal |
Volume | 71 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2025 |
Keywords
- *OH
- flow reactor
- heterojunction
- HMFOR