SSPT-bpMRI: A Self-supervised Pre-training Scheme for Improving Prostate Cancer Detection and Diagnosis in Bi-parametric MRI

Yuan Yuan, Euijoon Ahn, Dagan Feng, Mohamad Khadra, Jinman Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Prostate cancer (PCa) is one of the most prevalent cancers in men. Early diagnosis plays a pivotal role in reducing the mortality rate from clinically significant PCa (csPCa). In recent years, bi-parametric magnetic resonance imaging (bpMRI) has attracted great attention for the detection and diagnosis of csPCa. bpMRI is able to overcome some limitations of multi-parametric MRI (mpMRI) such as the use of contrast agents, the time-consuming for imaging and the costs, and achieve detection performance comparable to mpMRI. However, inter-reader agreements are currently low for prostate MRI. Advancements in artificial intelligence (AI) have propelled the development of deep learning (DL)-based computer-aided detection and diagnosis system (CAD). However, most of the existing DL models developed for csPCa identification are restricted by the scale of data and the scarcity in labels. In this paper, we propose a self-supervised pre-training scheme named SSPT-bpMRI with an image restoration pretext task integrating four different image transformations to improve the performance of DL algorithms. Specially, we explored the potential value of the self-supervised pre-training in fully supervised and weakly supervised situations. Experiments on the publicly available PI-CAI dataset demonstrate that our model outperforms the fully supervised or weakly supervised model alone.

Original languageEnglish
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Externally publishedYes
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: 24 Jul 202327 Jul 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period24/07/2327/07/23

Fingerprint

Dive into the research topics of 'SSPT-bpMRI: A Self-supervised Pre-training Scheme for Improving Prostate Cancer Detection and Diagnosis in Bi-parametric MRI'. Together they form a unique fingerprint.

Cite this