Spin-up control of tethered space station for artificial gravity task

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

In order to overcome the problems caused by the zero gravity of space, artificial gravity space station has been widely concerned in recent years. The tether-based space station relies on the centrifugal force generated by its rotation around the centroid to simulate gravity, which greatly reduces various problems caused by the zero gravity environment, and has many advantages such as low spin speed, flexibility, and scalability. For the spin-up process of the tethered space station, a dynamic model of the tethered space station based on the Lagrange method is established firstly. Then, the control law using sliding mode theory and the dynamic inversion is proposed. Different spin-up schemes are designed to test the control law. Simulation results shows that whether the system's tether retraction rate is adjustable or not, the angular velocity of the system can smoothly reach the desired value to produce the expected level of artificial gravity.

Original languageEnglish
Title of host publicationIEEE International Conference on Robotics and Biomimetics, ROBIO 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2502-2508
Number of pages7
ISBN (Electronic)9781728163215
DOIs
StatePublished - Dec 2019
Event2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019 - Dali, China
Duration: 6 Dec 20198 Dec 2019

Publication series

NameIEEE International Conference on Robotics and Biomimetics, ROBIO 2019

Conference

Conference2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
Country/TerritoryChina
CityDali
Period6/12/198/12/19

Keywords

  • Artificial gravity
  • Sliding mode control
  • Tethered space station

Fingerprint

Dive into the research topics of 'Spin-up control of tethered space station for artificial gravity task'. Together they form a unique fingerprint.

Cite this