Spectral Variability Augmented Two-Stream Network for Hyperspectral Sparse Unmixing

Ge Zhang, Shaohui Mei, Bobo Xie, Yan Feng, Qian Du

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Deep learning-based methods have drawn great attention in hyperspectral unmixing and obtained promising performance due to their powerful learning capability. However, few existing networks explicitly deal with the spectral variability inevitably present in hyperspectral images (HSIs), limiting their fitting performance. In this letter, a spectral variability augmented two-stream network (SVATN) is designed to explicitly address the problem of spectral variability in a deep convolutional network for sparse unmixing (SU). Specifically, the proposed SVATN maps a random input to coefficients of spectral variability in addition to abundances of endmembers, in which spectral variability is accommodated by the linear mixture model (LMM) as an augmented item. Moreover, a spatial-spectral correlation-based variability extraction (SSCVE) method is proposed to construct a spectral variability library, which serves as priors in the loss function to optimize the proposed SVATN. Experiments over synthetic and real datasets demonstrate the superiority of the proposed SVATN over several state-of-the-art methods. The code of our proposed method is released at: https://github.com/MeiShaohui/SVATN.

Original languageEnglish
Article number6014605
JournalIEEE Geoscience and Remote Sensing Letters
Volume19
DOIs
StatePublished - 2022

Keywords

  • Convolutional neural network
  • deep learning
  • hyperspectral images (HSIs)
  • sparse unmixing (SU)
  • spectral variability

Fingerprint

Dive into the research topics of 'Spectral Variability Augmented Two-Stream Network for Hyperspectral Sparse Unmixing'. Together they form a unique fingerprint.

Cite this