Abstract
Porous carbon nanotube networks represent a type of material that can achieve both structural robustness and high flexibility. We demonstrate here controlled synthesis of soft to hard sponges with densities ranging from 5 to 25 mg/cm3, while retaining a porosity of >99%. The stable sponge-like structure allows excellent compressibility tunable up to 90% volume shrinkage, and the ability to recover most of volume by free expansion. Electrical resistivity of the sponges changes linearly and reversibly after 300 cycles of large-strain compression. Nanotubes forming the three-dimensional scaffold maintain good contact and percolation during large-strain deformation, polymer infiltration, and cross-linking process, suggesting potential applications as strain sensors and conductive nanocomposites.
Original language | English |
---|---|
Pages (from-to) | 2320-2326 |
Number of pages | 7 |
Journal | ACS Nano |
Volume | 4 |
Issue number | 4 |
DOIs | |
State | Published - 27 Apr 2010 |
Externally published | Yes |
Keywords
- CNT sponges
- Compressibility
- Conductive nanocomposites
- Electrical resistivity
- Nanotubes