TY - JOUR
T1 - Smart-substrate
T2 - a novel structural design to avert residual stress accretion in directed energy deposition additive manufacturing
AU - Lu, Xufei
AU - Zhang, Guohao
AU - Chiumenti, Michele
AU - Cervera, Miguel
AU - Slimani, Mehdi
AU - Ma, Liang
AU - Wei, Lei
AU - Lin, Xin
N1 - Publisher Copyright:
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2023
Y1 - 2023
N2 - Residual stresses, related distortions and cracks are detrimental in metallic Additive Manufacturing (AM). Previously developed stress-control strategies based on reducing thermal gradients hardly diminish the stress concentrations at the built basement and easily affect other physical phenomena involved in AM. To overcome this, a novel strategy, named as Smart-Substrate, consisting of optimising the inner structure and local stiffness of the substrate is proposed to avert stress accretion and related part deformations. To demonstrate its advantages, a coupled thermomechanical finite element model for AM, experimentally calibrated with in-situ temperature and displacement measurements, is employed to analyse the thermal and mechanical behaviour of three groups of different structures with increasing geometrical complexity (single-wall, rectangular and block parts) fabricated by Directed Energy Deposit (DED) on the standard and smart substrates, respectively. Through using Smart-Substrate, the generation of residual stresses, especially the stress concentrations at the bottom corner of DED-builds being highly sensitive to cracks, and the induced deflections, are fundamentally throttled, and contrariwise for the standard substrate. More importantly, the use of Smart-Substrate is almost without prejudice to the temperature field, metallurgy and resulting mechanical hardness. This provides a possibility for addressing different physical problems individually, enlarging the AM process window.
AB - Residual stresses, related distortions and cracks are detrimental in metallic Additive Manufacturing (AM). Previously developed stress-control strategies based on reducing thermal gradients hardly diminish the stress concentrations at the built basement and easily affect other physical phenomena involved in AM. To overcome this, a novel strategy, named as Smart-Substrate, consisting of optimising the inner structure and local stiffness of the substrate is proposed to avert stress accretion and related part deformations. To demonstrate its advantages, a coupled thermomechanical finite element model for AM, experimentally calibrated with in-situ temperature and displacement measurements, is employed to analyse the thermal and mechanical behaviour of three groups of different structures with increasing geometrical complexity (single-wall, rectangular and block parts) fabricated by Directed Energy Deposit (DED) on the standard and smart substrates, respectively. Through using Smart-Substrate, the generation of residual stresses, especially the stress concentrations at the bottom corner of DED-builds being highly sensitive to cracks, and the induced deflections, are fundamentally throttled, and contrariwise for the standard substrate. More importantly, the use of Smart-Substrate is almost without prejudice to the temperature field, metallurgy and resulting mechanical hardness. This provides a possibility for addressing different physical problems individually, enlarging the AM process window.
KW - Additive manufacturing
KW - multi-physics
KW - residual stresses
KW - structural design
KW - thermomechanical simulation
UR - http://www.scopus.com/inward/record.url?scp=85168244207&partnerID=8YFLogxK
U2 - 10.1080/17452759.2023.2246041
DO - 10.1080/17452759.2023.2246041
M3 - 文章
AN - SCOPUS:85168244207
SN - 1745-2759
VL - 18
JO - Virtual and Physical Prototyping
JF - Virtual and Physical Prototyping
IS - 1
M1 - e2246041
ER -