Single frame image super resolution via learning multiple ANFIS mappings

Jing Yang, Changjing Shang, Ying Li, Qiang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

This paper proposes a new approach for single frame image super resolution using multiple ANFIS (Adaptive Network-based Fuzzy Inference System) mappings. It presents an implemented learning system that captures the relationship between a low resolution (LR) image patch space and a high resolution (HR) one given an external image database. In particular, a collected large number of LR and HR image patch pairs are divided into different groups with a clustering method. For each clustered group of the training samples, an ANFIS mapping is learned for super resolution (SR). The non-local means filter is subsequently employed to suppress the displeasing artefacts of the resulting reconstructed HR image. The proposed approach is evaluated on a range of natural images and compared with a number of existing state-of-the-art SR algorithms, demonstrating its effectiveness.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Fuzzy Systems, FUZZ 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509060344
DOIs
StatePublished - 23 Aug 2017
Event2017 IEEE International Conference on Fuzzy Systems, FUZZ 2017 - Naples, Italy
Duration: 9 Jul 201712 Jul 2017

Publication series

NameIEEE International Conference on Fuzzy Systems
ISSN (Print)1098-7584

Conference

Conference2017 IEEE International Conference on Fuzzy Systems, FUZZ 2017
Country/TerritoryItaly
CityNaples
Period9/07/1712/07/17

Fingerprint

Dive into the research topics of 'Single frame image super resolution via learning multiple ANFIS mappings'. Together they form a unique fingerprint.

Cite this