Self-Paced and Discrete Multiple Kernel k-Means

Yihang Lu, Xuan Zheng, Jitao Lu, Rong Wang, Feiping Nie, Xuelong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Multiple Kernel K-means (MKKM) uses various kernels from different sources to improve clustering performance. However, most of the existing models are non-convex, which is prone to be stuck into bad local optimum, especially with noise and outliers. To address the issue, we propose a novel Self-Paced and Discrete Multiple Kernel K-Means (SPD-MKKM). It learns the MKKM model in a meaningful order by progressing both samples and kernels from easy to complex, which is beneficial to avoid bad local optimum. In addition, whereas existing methods optimize in two stages: learning the relaxation matrix and then finding the discrete one by extra discretization, our work can directly gain the discrete cluster indicator matrix without extra process. What's more, a well-designed alternative optimization is employed to reduce the overall computational complexity via using the coordinate descent technique. Finally, thorough experiments performed on real-world datasets illustrated the excellence and efficacy of our method.

Original languageEnglish
Title of host publicationCIKM 2022 - Proceedings of the 31st ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages4284-4288
Number of pages5
ISBN (Electronic)9781450392365
DOIs
StatePublished - 17 Oct 2022
Event31st ACM International Conference on Information and Knowledge Management, CIKM 2022 - Atlanta, United States
Duration: 17 Oct 202221 Oct 2022

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference31st ACM International Conference on Information and Knowledge Management, CIKM 2022
Country/TerritoryUnited States
CityAtlanta
Period17/10/2221/10/22

Keywords

  • clustering
  • multiple kernel k-means
  • self-paced learning

Fingerprint

Dive into the research topics of 'Self-Paced and Discrete Multiple Kernel k-Means'. Together they form a unique fingerprint.

Cite this