Segmentation then Prediction: A Multi-task Solution to Brain Tumor Segmentation and Survival Prediction

Guojing Zhao, Bowen Jiang, Jianpeng Zhang, Yong Xia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Accurate brain tumor segmentation and survival prediction are two fundamental but challenging tasks in the computer aided diagnosis of gliomas. Traditionally, these two tasks were performed independently, without considering the correlation between them. We believe that both tasks should be performed under a unified framework so as to enable them mutually benefit each other. In this paper, we propose a multi-task deep learning model called segmentation then prediction (STP), to segment brain tumors and predict patient overall survival time. The STP model is composed of a segmentation module and a survival prediction module. The former uses 3D U-Net as its backbone, and the latter uses both local and global features. The local features are extracted by the last layer of the segmentation encoder, while the global features are produced by a global branch, which uses 3D ResNet-50 as its backbone. The STP model is jointly optimized for two tasks. We evaluated the proposed STP model on the BraTS 2020 validation dataset and achieved an average Dice similarity coefficient (DSC) of 0.790, 0.910, 0.851 for the segmentation of enhanced tumor core, whole tumor, and tumor core, respectively, and an accuracy of 65.5% for survival prediction.

Original languageEnglish
Title of host publicationBrainlesion
Subtitle of host publicationGlioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Revised Selected Papers
EditorsAlessandro Crimi, Spyridon Bakas
PublisherSpringer Science and Business Media Deutschland GmbH
Pages492-502
Number of pages11
ISBN (Print)9783030720834
DOIs
StatePublished - 2021
Event6th International MICCAI Brainlesion Workshop, BrainLes 2020 Held in Conjunction with 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020 - Virtual, Online
Duration: 4 Oct 20204 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12658 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference6th International MICCAI Brainlesion Workshop, BrainLes 2020 Held in Conjunction with 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020
CityVirtual, Online
Period4/10/204/10/20

Keywords

  • Brain tumor segmentation
  • Deep learning
  • Joint learning
  • MR image generation
  • Survival prediction

Fingerprint

Dive into the research topics of 'Segmentation then Prediction: A Multi-task Solution to Brain Tumor Segmentation and Survival Prediction'. Together they form a unique fingerprint.

Cite this