Segmentation method for ship-radiated noise using the generalized likelihood ratio test on an ordinal pattern distribution

Lei He, Xiao Hong Shen, Mu Hang Zhang, Hai Yan Wang

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Due to the diversity of ship-radiated noise (SRN), audio segmentation is an essential procedure in the ship statuses/categories identification. However, the existing segmentation methods are not suitable for the SRN because of the lack of prior knowledge. In this paper, by a generalized likelihood ratio (GLR) test on the ordinal pattern distribution (OPD), we proposed a segmentation criterion and introduce it into single change-point detection (SCPD) and multiple change-points detection (MCPD) for SRN. The proposed method is free from the acoustic feature extraction and the corresponding probability distribution estimation. In addition, according to the sequential structure of ordinal patterns, the OPD is efficiently estimated on a series of analysis windows. By comparison with the Bayesian Information Criterion (BIC) based segmentation method, we evaluate the performance of the proposed method on both synthetic signals and real-world SRN. The segmentation results on synthetic signals show that the proposed method estimates the number and location of the change-points more accurately. The classification results on real-world SRN show that our method obtains more distinguishable segments, which verifies its effectiveness in SRN segmentation.

Original languageEnglish
Article number374
JournalEntropy
Volume22
Issue number4
DOIs
StatePublished - 1 Apr 2020

Keywords

  • Audio segmentation
  • Change-point detection
  • Ordinal pattern
  • Ship-radiated noise

Fingerprint

Dive into the research topics of 'Segmentation method for ship-radiated noise using the generalized likelihood ratio test on an ordinal pattern distribution'. Together they form a unique fingerprint.

Cite this