Search to Pass Messages for Temporal Knowledge Graph Completion

Zhen Wang, Haotong Du, Quanming Yao, Xuelong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Completing missing facts is a fundamental task for temporal knowledge graphs (TKGs). Recently, graph neural network (GNN) based methods, which can simultaneously explore topological and temporal information, have become the state-of-the-art (SOTA) to complete TKGs. However, these studies are based on hand-designed architectures and fail to explore the diverse topological and temporal properties of TKG. To address this issue, we propose to use neural architecture search (NAS) to design data-specific message passing architecture for TKG completion. In particular, we develop a generalized framework to explore topological and temporal information in TKGs. Based on this framework, we design an expressive search space to fully capture various properties of different TKGs. Meanwhile, we adopt a search algorithm, which trains a supernet structure by sampling single path for efficient search with less cost. We further conduct extensive experiments on three benchmark datasets. The results show that the searched architectures by our method achieve the SOTA performances. Besides, the searched models can also implicitly reveal diverse properties in different TKGs. Our code is released in https://github.com/striderdu/SPA.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationEMNLP 2022
EditorsYoav Goldberg, Zornitsa Kozareva, Yue Zhang
PublisherAssociation for Computational Linguistics (ACL)
Pages6189-6201
Number of pages13
ISBN (Electronic)9781959429432
DOIs
StatePublished - 2022
Event2022 Findings of the Association for Computational Linguistics: EMNLP 2022 - Hybrid, Abu Dhabi, United Arab Emirates
Duration: 7 Dec 202211 Dec 2022

Publication series

NameFindings of the Association for Computational Linguistics: EMNLP 2022

Conference

Conference2022 Findings of the Association for Computational Linguistics: EMNLP 2022
Country/TerritoryUnited Arab Emirates
CityHybrid, Abu Dhabi
Period7/12/2211/12/22

Fingerprint

Dive into the research topics of 'Search to Pass Messages for Temporal Knowledge Graph Completion'. Together they form a unique fingerprint.

Cite this