Scene classification of high resolution remote sensing images using convolutional neural networks

Gong Cheng, Chengcheng Ma, Peicheng Zhou, Xiwen Yao, Junwei Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

105 Scopus citations

Abstract

Scene classification of high resolution remote sensing images plays an important role for a wide range of applications. While significant efforts have been made in developing various methods for scene classification, most of them are based on handcrafted or shallow learning-based features. In this paper, we investigate the use of deep convolutional neural network (CNN) for scene classification. To this end, we first adopt two simple and effective strategies to extract CNN features: (1) using pre-trained CNN models as universal feature extractors, and (2) domain-specifically fine-tuning pre-trained CNN models on our scene classification dataset. Then, scene classification is carried out by using simple classifiers such as linear support vector machine (SVM). In our work, three off-the-shelf CNN models including AlexNet [1], VGGNet [2], and GoogleNet [3] are investigated. Comprehensive evaluations on a publicly available 21 classes land use dataset and comparisons with several state-of-the-art approaches demonstrate that deep CNN features are effective for scene classification of high resolution remote sensing images.

Original languageEnglish
Title of host publication2016 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages767-770
Number of pages4
ISBN (Electronic)9781509033324
DOIs
StatePublished - 1 Nov 2016
Event36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Beijing, China
Duration: 10 Jul 201615 Jul 2016

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2016-November

Conference

Conference36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016
Country/TerritoryChina
CityBeijing
Period10/07/1615/07/16

Keywords

  • Scene classification
  • convolutional neural network (CNN)
  • deep learning
  • feature extraction
  • remote sensing images

Fingerprint

Dive into the research topics of 'Scene classification of high resolution remote sensing images using convolutional neural networks'. Together they form a unique fingerprint.

Cite this