Robust tracking with weighted online structured learning

Rui Yao, Qinfeng Shi, Chunhua Shen, Yanning Zhang, Anton Van Den Hengel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

29 Scopus citations

Abstract

Robust visual tracking requires constant update of the target appearance model, but without losing track of previous appearance information. One of the difficulties with the online learning approach to this problem has been a lack of flexibility in the modelling of the inevitable variations in target and scene appearance over time. The traditional online learning approach to the problem treats each example equally, which leads to previous appearances being forgotten too quickly and a lack of emphasis on the most current observations. Through analysis of the visual tracking problem, we develop instead a novel weighted form of online risk which allows more subtlety in its representation. However, the traditional online learning framework does not accommodate this weighted form. We thus also propose a principled approach to weighted online learning using weighted reservoir sampling and provide a weighted regret bound as a theoretical guarantee of performance. The proposed novel online learning framework can handle examples with different importance weights for binary, multiclass, and even structured output labels in both linear and non-linear kernels. Applying the method to tracking results in an algorithm which is both efficient and accurate even in the presence of severe appearance changes. Experimental results show that the proposed tracker outperforms the current state-of-the-art.

Original languageEnglish
Title of host publicationComputer Vision, ECCV 2012 - 12th European Conference on Computer Vision, Proceedings
Pages158-172
Number of pages15
EditionPART 3
DOIs
StatePublished - 2012
Event12th European Conference on Computer Vision, ECCV 2012 - Florence, Italy
Duration: 7 Oct 201213 Oct 2012

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 3
Volume7574 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference12th European Conference on Computer Vision, ECCV 2012
Country/TerritoryItaly
CityFlorence
Period7/10/1213/10/12

Fingerprint

Dive into the research topics of 'Robust tracking with weighted online structured learning'. Together they form a unique fingerprint.

Cite this