Robust and stretchable Ti3C2Tx MXene/PEI conductive composite dual-network hydrogels for ultrasensitive strain sensing

Jinliang Xie, Fangfang Su, Ling Fan, Zheshen Mu, Hongni Wang, Zhongjie He, Weirui Zhang, Dongdong Yao, Yaping Zheng

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The development of high-performance hydrogels with superior strength, stretchability, and conductivity is critical to the practical application of flexible sensors. In this study, we employed a strategy that involves introducing physical cross-linking points, creating a double network, and adding nanofillers. By utilizing a two-step method that involves thermal cross-linking and post-immersion cross-linking, and using two common metal ions to crosslink different polymer networks, we successfully developed a conductive composite dual-network hydrogel. In addition, the incorporation of modified MXene has significantly improved the strength and toughness of the hydrogel. The resulting hydrogel exhibits impressive mechanical properties, including a tensile strength of 2.64 MPa and elongation at break of 689%, as well as high toughness of 10.25 MJ·m−3 and conductivity of 1.89 S/m. When applied as a flexible sensor in electronic skin, the sensor demonstrates a wide operating range (>300%), high sensitivity (GF = 4.64), and excellent linear detection ability (R2 = 0.99).

Original languageEnglish
Article number107833
JournalComposites Part A: Applied Science and Manufacturing
Volume176
DOIs
StatePublished - Jan 2024

Keywords

  • A. Hybrid
  • A. Nanocomposites
  • B. Chemical properties
  • B. Mechanical properties

Fingerprint

Dive into the research topics of 'Robust and stretchable Ti3C2Tx MXene/PEI conductive composite dual-network hydrogels for ultrasensitive strain sensing'. Together they form a unique fingerprint.

Cite this