RIFD-CNN: Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection

Gong Cheng, Peicheng Zhou, Junwei Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

160 Scopus citations

Abstract

Thanks to the powerful feature representations obtained through deep convolutional neural network (CNN), the performance of object detection has recently been substantially boosted. Despite the remarkable success, the problems of object rotation, within-class variability, and between-class similarity remain several major challenges. To address these problems, this paper proposes a novel and effective method to learn a rotation-invariant and Fisher discriminative CNN (RIFD-CNN) model. This is achieved by introducing and learning a rotation-invariant layer and a Fisher discriminative layer, respectively, on the basis of the existing high-capacity CNN architectures. Specifically, the rotation-invariant layer is trained by imposing an explicit regularization constraint on the objective function that enforces invariance on the CNN features before and after rotating. The Fisher discriminative layer is trained by imposing the Fisher discrimination criterion on the CNN features so that they have small within-class scatter but large between-class separation. In the experiments, we comprehensively evaluate the proposed method for object detection task on a public available aerial image dataset and the PASCAL VOC 2007 dataset. State-of-the-art results are achieved compared with the existing baseline methods.

Original languageEnglish
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PublisherIEEE Computer Society
Pages2884-2893
Number of pages10
ISBN (Electronic)9781467388504
DOIs
StatePublished - 9 Dec 2016
Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
Duration: 26 Jun 20161 Jul 2016

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2016-December
ISSN (Print)1063-6919

Conference

Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Country/TerritoryUnited States
CityLas Vegas
Period26/06/161/07/16

Fingerprint

Dive into the research topics of 'RIFD-CNN: Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection'. Together they form a unique fingerprint.

Cite this