Remarkable bioactivity, bio-tribological, antibacterial, and anti-corrosion properties in a Ti-6Al-4V-xCu alloy by laser powder bed fusion for superior biomedical implant applications

Jiang Ju, Rui Zan, Zhao Shen, Chenchen Wang, Peng Peng, Jun Wang, Baode Sun, Bo Xiao, Qian Li, Shaofei Liu, Tao Yang

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Ti-6Al-4V alloys, widely used as medical implants, suffer from low wear resistance inhuman body fluids, restricting their applications in the biomedical field. This study fabricated a series of novel Ti-6Al-4V-xCu (x = 3, 5, 8, 10 wt%) alloys using laser powder bed fusion (L-PBF) to find a good combination of excellent bio-tribological, corrosion resistance, antibacterial property, and bioactivity. Results showed that the microstructure was comprised of ά and Cu-rich β phase in the Ti-6Al-4V-3Cu and −5Cu alloys, while the ά+Cu-rich β + nano Ti2Cu microstructures were observed in the alloys with Cu content above 8 wt%. The micro-hardness, bio-tribological, and corrosion resistance of Ti-6Al-4 V-xCu alloys were significantly improved with increasing the Cu content, and the L-PBF Ti-6Al-4V-10Cu alloy exhibited the best combination of properties: the micro-hardness reaches 596.8 HV, ascribed to the solid solution, grain refinement, and precipitation strengthening; the corrosion density is ∼ 2 orders and a wear rate ∼ 1 order of magnitude lower than Ti64 alloy, showing optimal corrosion and bio-tribological properties; and the antibacterial rates against E. coli. and S. aureus reach ∼ 98% and ∼ 100%. The newly developed Ti-6Al-4V-xCu alloy was demonstrated with non-cytotoxicity and excellent antibacterial property, which is a promising candidate for superior biomedical implant applications.

Original languageEnglish
Article number144656
JournalChemical Engineering Journal
Volume471
DOIs
StatePublished - 1 Sep 2023
Externally publishedYes

Keywords

  • Antibacterial property
  • Bio-tribological property
  • Corrosion resistance
  • In vitro cytocompatibility
  • Laser powder bed fusion
  • Titanium alloy

Fingerprint

Dive into the research topics of 'Remarkable bioactivity, bio-tribological, antibacterial, and anti-corrosion properties in a Ti-6Al-4V-xCu alloy by laser powder bed fusion for superior biomedical implant applications'. Together they form a unique fingerprint.

Cite this