Reliability of Hypersonic Airfoil with Freeplay and Stochasticity via Nonlinear Energy Sink

Weili Guo, Yong Xu, Qi Liu, Stefano Lenci, Guangning Li

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The reliability of a pitch-plunge hypersonic airfoil in random fluctuating flow with both cubic and freeplay nonlinearity is examined. The Hopf bifurcation and dynamic responses of the hypersonic airfoil are performed. To analyze the reliability, the effects of stochasticity on the dynamic behaviors of the hypersonic airfoil model are discussed in detail. Several unwanted phenomena that result in the failure of the airfoil structure are induced by random fluctuations. Subsequently, the reliability of the airfoil model is defined and analyzed according to the first passage failure criteria. The effects of different parameters on the reliability are investigated. Furthermore, a nonlinear energy sink is introduced to suppress the vibration of the airfoil and enhance the reliability. Two-dimensional reliability regions of the airfoil model are given to provide the safety parameter region. The results show that the reliability of the airfoil model is significantly improved with the nonlinear energy sink. This work will provide new insights into the safety design of hypersonic aircraft.

Original languageEnglish
Pages (from-to)3258-3270
Number of pages13
JournalAIAA Journal
Volume62
Issue number9
DOIs
StatePublished - Sep 2024

Keywords

  • Aerodynamics
  • Aeroelasticity
  • Aircraft Wing Design
  • Hypersonic Aircraft
  • Mechanical and Structural Vibrations
  • Nonlinear Energy Sink
  • Probability Density Functions
  • Random Fluctuation
  • Reliability Design
  • Structural Reliability Analysis

Fingerprint

Dive into the research topics of 'Reliability of Hypersonic Airfoil with Freeplay and Stochasticity via Nonlinear Energy Sink'. Together they form a unique fingerprint.

Cite this