TY - JOUR
T1 - Rejuvenated Photodynamic Therapy for Bacterial Infections
AU - Jia, Qingyan
AU - Song, Qing
AU - Li, Peng
AU - Huang, Wei
N1 - Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2019/7/25
Y1 - 2019/7/25
N2 - The emergence of multidrug resistant bacterial strains has hastened the exploration of advanced microbicides and antibacterial techniques. Photodynamic antibacterial therapy (PDAT), an old-fashioned technique, has been rejuvenated to combat “superbugs” and biofilm-associated infections owing to its excellent characteristics of noninvasiveness and broad antibacterial spectrum. More importantly, bacteria are less likely to produce drug resistance to PDAT because it does not require specific targeting interaction between photosensitizers (PSs) and bacteria. This review mainly focuses on recent developments and future prospects of PDAT. The mechanisms of PDAT against bacteria and biofilms are briefly introduced. In addition to classical macrocyclic PSs, several innovative PSs, including non-self-quenching PSs, conjugated polymer–based PSs, and nano-PSs, are summarized in detail. Numerous multifunctional PDAT systems such as in situ light-activated PDAT, stimuli-responsive PDAT, oxygen self-enriching enhanced PDAT, and PDAT-based multimodal therapy are highlighted to overcome the inherent defects of PDAT in vivo (e.g., limited penetration depth of light and hypoxic environment of infectious sites).
AB - The emergence of multidrug resistant bacterial strains has hastened the exploration of advanced microbicides and antibacterial techniques. Photodynamic antibacterial therapy (PDAT), an old-fashioned technique, has been rejuvenated to combat “superbugs” and biofilm-associated infections owing to its excellent characteristics of noninvasiveness and broad antibacterial spectrum. More importantly, bacteria are less likely to produce drug resistance to PDAT because it does not require specific targeting interaction between photosensitizers (PSs) and bacteria. This review mainly focuses on recent developments and future prospects of PDAT. The mechanisms of PDAT against bacteria and biofilms are briefly introduced. In addition to classical macrocyclic PSs, several innovative PSs, including non-self-quenching PSs, conjugated polymer–based PSs, and nano-PSs, are summarized in detail. Numerous multifunctional PDAT systems such as in situ light-activated PDAT, stimuli-responsive PDAT, oxygen self-enriching enhanced PDAT, and PDAT-based multimodal therapy are highlighted to overcome the inherent defects of PDAT in vivo (e.g., limited penetration depth of light and hypoxic environment of infectious sites).
KW - antibacterial
KW - antibiotic resistance
KW - biofilms
KW - photodynamic therapy
KW - photosensitizers
UR - http://www.scopus.com/inward/record.url?scp=85068188036&partnerID=8YFLogxK
U2 - 10.1002/adhm.201900608
DO - 10.1002/adhm.201900608
M3 - 文献综述
C2 - 31240867
AN - SCOPUS:85068188036
SN - 2192-2640
VL - 8
JO - Advanced Healthcare Materials
JF - Advanced Healthcare Materials
IS - 14
M1 - 1900608
ER -