Recursive Bayesian inference and learning for target tracking with unknown maneuvers

Ruiping Ji, Yan Liang, Linfeng Xu

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

This paper addresses the problem of target tracking under completely unknown maneuvering behavior to cope with the complicated target maneuvers. The actual but unknown motion model is formulated as a linear stochastic model with unknown transition matrix and modeling error covariance. Considering the diversity and time-varying of maneuvers, both the transition matrix and covariance are random. Accordingly, the tracker design amounts to recursively updating the joint posterior of target state and unknown parameters (i.e., the transition matrix and covariance). Since it is difficult to obtain the analytical joint posterior, a Bayesian inference and learning scheme is proposed in the sequential Monte Carlo (SMC) framework to alternatively update the state posterior and the unknown parameters posterior. Particularly, it is revealed that the state prediction density used in the SMC obeys a Student's t-distribution, thus ensuring the effective sampling of particle trajectories. Finally, a maneuvering benchmark shows that the proposed tracker can significantly reduce the peak tracking error, which is one of the most important performance indices for preventing tracking failure.

Original languageEnglish
Pages (from-to)1032-1044
Number of pages13
JournalInternational Journal of Adaptive Control and Signal Processing
Volume36
Issue number4
DOIs
StatePublished - Apr 2022

Keywords

  • linear stochastic model
  • sequential Monte Carlo
  • target tracking
  • unknown maneuvering behavior

Fingerprint

Dive into the research topics of 'Recursive Bayesian inference and learning for target tracking with unknown maneuvers'. Together they form a unique fingerprint.

Cite this