Projected clustering via robust orthogonal least square regression with optimal scaling

Rui Zhang, Feiping Nie, Xuelong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

The orthogonal least square regression (OLSR) serves as a pretty significant problem for the dimensionality reduction. Due to lack of the scale change in OLSR, the scaling term is at first introduced to OLSR to build up a novel orthogonal least square regression with optimal scaling (OLSR-OS) problem. However, OLSR-OS is still sensitive to the outliers, such that associated results could be fallacious. To strengthen the robustness of OLSR-OS, we propose an original robust OLSR-OS (ROLSR-OS) problem in ℓ2,1-norm. To tackle a more ill-defined situation, ROLSR-OS in ℓ2,1-norm can be further extended to ROLSR-OS in capped ℓ2-norm. Besides, the associated ROLSR-OS methods could be derived by solving the re-weighted counterparts of ROLSR-OS problems in both norms. Moreover, the equivalence between the re-weighted counterparts and the original ROLSR-OS problems is also provided along with the convergence analysis of the proposed ROLSR-OS methods. Accordingly, both the optimal scaling and weight can be achieved automatically via the proposed ROLSR-OS approaches. Specifically, the proposed ROLSR-OS methods are self-adaptive, such that the smaller weight would be automatically assigned to the term with larger outliers to enhance the robustness. Consequently, projected clustering and modified projected clustering under the proposed ROLSR-OS problems are further investigated both theoretically and experimentally.

Original languageEnglish
Title of host publication2017 International Joint Conference on Neural Networks, IJCNN 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2784-2791
Number of pages8
ISBN (Electronic)9781509061815
DOIs
StatePublished - 30 Jun 2017
Event2017 International Joint Conference on Neural Networks, IJCNN 2017 - Anchorage, United States
Duration: 14 May 201719 May 2017

Publication series

NameProceedings of the International Joint Conference on Neural Networks
Volume2017-May

Conference

Conference2017 International Joint Conference on Neural Networks, IJCNN 2017
Country/TerritoryUnited States
CityAnchorage
Period14/05/1719/05/17

Fingerprint

Dive into the research topics of 'Projected clustering via robust orthogonal least square regression with optimal scaling'. Together they form a unique fingerprint.

Cite this