TY - JOUR
T1 - Probiotic Membrane-Modified Nanocomposite Alleviates Inflammation and Microbiota Dysbiosis in Colitis by Scavenging Oxidative Stress and Restoring Immune Homeostasis
AU - Yang, Huan
AU - Zhang, Xu
AU - Wu, Jianshuang
AU - Xiao, Yao
AU - Dai, Liangliang
AU - Wang, Gaoyang
AU - Zhang, Xiaohong
AU - Hu, Chenghu
AU - He, Shuixiang
AU - Yuan, Zhang
N1 - Publisher Copyright:
© 2025 American Chemical Society.
PY - 2025
Y1 - 2025
N2 - Inflammatory bowel disease (IBD) is a complex chronic intestinal disorder in which excessive oxidative stress, dysregulated immune response, and microbiota dysbiosis contribute to recurrent episodes of inflammation in the colonic mucosa. Current clinical treatments focusing solely on inflammation resolution often exhibit limited efficacy due to the inability to fundamentally improve the pathological microenvironment. Herein, a probiotic membrane-modified drug delivery nanocomposite, namely, MPDA@Cur@EM, is developed for the comprehensive treatment of IBD. It contains two components: the curcumin-loaded mesoporous polydopamine nanoparticle (MPDA@Cur) as the core and the Escherichia coli Nissle 1917 outer membrane (EM) as the surface. For MPDA@Cur, the pathological microenvironment triggers the responsive release of curcumin. Importantly, MPDA@Cur can effectively alleviate the inflammatory response of LPS-activated macrophages through MPDA-mediated ROS scavenging and curcumin-induced M2 polarization. In the dextran sulfate sodium (DSS)-induced colitis model, the EM coating not only allows for the targeting enrichment of orally administered MPDA@Cur@EM to the inflamed colonic mucosa, but also participates in the regulation of intestinal flora. Consequently, MPDA@Cur@EM efficiently attenuates the inflammatory reaction and restores the intestinal barrier functions, demonstrated by the multipronged manner of restoring redox balance, remodeling immune homeostasis, and reshaping the gut microecology. Collectively, this work provides a safe and promising codelivery strategy of probiotic product, antioxidative nanoenzyme, and therapeutic drug for comprehensive management of IBD.
AB - Inflammatory bowel disease (IBD) is a complex chronic intestinal disorder in which excessive oxidative stress, dysregulated immune response, and microbiota dysbiosis contribute to recurrent episodes of inflammation in the colonic mucosa. Current clinical treatments focusing solely on inflammation resolution often exhibit limited efficacy due to the inability to fundamentally improve the pathological microenvironment. Herein, a probiotic membrane-modified drug delivery nanocomposite, namely, MPDA@Cur@EM, is developed for the comprehensive treatment of IBD. It contains two components: the curcumin-loaded mesoporous polydopamine nanoparticle (MPDA@Cur) as the core and the Escherichia coli Nissle 1917 outer membrane (EM) as the surface. For MPDA@Cur, the pathological microenvironment triggers the responsive release of curcumin. Importantly, MPDA@Cur can effectively alleviate the inflammatory response of LPS-activated macrophages through MPDA-mediated ROS scavenging and curcumin-induced M2 polarization. In the dextran sulfate sodium (DSS)-induced colitis model, the EM coating not only allows for the targeting enrichment of orally administered MPDA@Cur@EM to the inflamed colonic mucosa, but also participates in the regulation of intestinal flora. Consequently, MPDA@Cur@EM efficiently attenuates the inflammatory reaction and restores the intestinal barrier functions, demonstrated by the multipronged manner of restoring redox balance, remodeling immune homeostasis, and reshaping the gut microecology. Collectively, this work provides a safe and promising codelivery strategy of probiotic product, antioxidative nanoenzyme, and therapeutic drug for comprehensive management of IBD.
KW - anti-inflammation
KW - antioxidative stress
KW - immune homeostasis
KW - inflammatory bowel disease
KW - probiotic membrane
UR - http://www.scopus.com/inward/record.url?scp=105001965371&partnerID=8YFLogxK
U2 - 10.1021/acsami.4c22004
DO - 10.1021/acsami.4c22004
M3 - 文章
AN - SCOPUS:105001965371
SN - 1944-8244
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
ER -