TY - GEN
T1 - Privacy-Preserving Digital Twin for Vehicular Edge Computing Networks
AU - Yang, Yi
AU - Ma, Wenqiang
AU - Sun, Wen
AU - Zhang, Haibin
AU - Liu, Zhiqiang
AU - Xu, Lexi
AU - Zhu, Ye
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - As an emerging technology, digital twin (DT) has great potential to address the challenges posed by the dynamics and complexity of vehicles in vehicular edge computing (VEC) networks. By mapping the VEC network to the virtual space, DT can monitor vehicles, road side units (RSUs), channels, and resource usage in real time, further bringing comprehensive and accurate network analysis to the VEC network. However, the real-world implement of DT-empowered VEC networks cannot avoid the collection of privacy-sensitive information of participants. An incentive mechanism is necessitated to identify the qualities of participants without prior information and incent them to participate in DT modeling, so as to realize the requirement of privacy preserving while improving the DT modeling efficiency. In this paper, We propose a combined multi-armed bandit-based auction (CMABA) incentive mechanism that can identify the quality of clients in the VEC network without revealing sensitive and private information, and achieve the optimal performance of the model under budget constraints. The simulation results show that this scheme can significantly incent high-quality clients to participate in DT modeling under the requirement of privacy preserving and the constraint of limited budget, and improve the accuracy of DT modeling.
AB - As an emerging technology, digital twin (DT) has great potential to address the challenges posed by the dynamics and complexity of vehicles in vehicular edge computing (VEC) networks. By mapping the VEC network to the virtual space, DT can monitor vehicles, road side units (RSUs), channels, and resource usage in real time, further bringing comprehensive and accurate network analysis to the VEC network. However, the real-world implement of DT-empowered VEC networks cannot avoid the collection of privacy-sensitive information of participants. An incentive mechanism is necessitated to identify the qualities of participants without prior information and incent them to participate in DT modeling, so as to realize the requirement of privacy preserving while improving the DT modeling efficiency. In this paper, We propose a combined multi-armed bandit-based auction (CMABA) incentive mechanism that can identify the quality of clients in the VEC network without revealing sensitive and private information, and achieve the optimal performance of the model under budget constraints. The simulation results show that this scheme can significantly incent high-quality clients to participate in DT modeling under the requirement of privacy preserving and the constraint of limited budget, and improve the accuracy of DT modeling.
KW - auction
KW - digital twin
KW - incentive mechanism
KW - vehicle edge computing
UR - http://www.scopus.com/inward/record.url?scp=85168131555&partnerID=8YFLogxK
U2 - 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00318
DO - 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00318
M3 - 会议稿件
AN - SCOPUS:85168131555
T3 - Proceedings - 2022 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Autonomous and Trusted Vehicles, Scalable Computing and Communications, Digital Twin, Privacy Computing, Metaverse, SmartWorld/UIC/ATC/ScalCom/DigitalTwin/PriComp/Metaverse 2022
SP - 2238
EP - 2243
BT - Proceedings - 2022 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Autonomous and Trusted Vehicles, Scalable Computing and Communications, Digital Twin, Privacy Computing, Metaverse, SmartWorld/UIC/ATC/ScalCom/DigitalTwin/PriComp/Metaverse 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 IEEE SmartWorld, 19th IEEE International Conference on Ubiquitous Intelligence and Computing, 2022 IEEE International Conference on Autonomous and Trusted Vehicles Conference, 22nd IEEE International Conference on Scalable Computing and Communications, 2022 IEEE International Conference on Digital Twin, 8th IEEE International Conference on Privacy Computing and 2022 IEEE International Conference on Metaverse, SmartWorld/UIC/ATC/ScalCom/DigitalTwin/PriComp/Metaverse 2022
Y2 - 15 December 2022 through 18 December 2022
ER -