Abstract
A photonic bandgap is a range of wavelengths wherein light is forbidden from entering a photonic crystal, similar to the electronic bandgap in semiconductors. Fabricating photonic crystals with a complete photonic bandgap in the visible spectrum presents at least two important challenges: achieving a material refractive index > ~2 and a three-dimensional patterning resolution better than ~280 nm (lattice constant of 400 nm). Here we show an approach to overcome such limitations using additive manufacturing, thus realizing high-quality, high-refractive index photonic crystals with size-tunable bandgaps across the visible spectrum. We develop a titanium ion-doped resin (Ti-Nano) for high-resolution printing by two-photon polymerization lithography. After printing, the structures are heat-treated in air to induce lattice shrinkage and produce titania nanostructures. We attain three-dimensional photonic crystals with patterning resolution as high as 180 nm and refractive index of 2.4–2.6. Optical characterization reveals ~100% reflectance within the photonic crystal bandgap in the visible range. Finally, we show capabilities in defining local defects and demonstrate proof-of-principle applications in spectrally selective perfect reflectors and chiral light discriminators.
Original language | English |
---|---|
Article number | 165123 |
Pages (from-to) | 1813-1820 |
Number of pages | 8 |
Journal | Nature Nanotechnology |
Volume | 19 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2024 |