Porous TiO2/Pt/TiO2 sandwich catalyst for highly selective semihydrogenation of alkyne to olefin

Haojie Liang, Bin Zhang, Huibin Ge, Xiaomin Gu, Shufang Zhang, Yong Qin

Research output: Contribution to journalArticlepeer-review

91 Scopus citations

Abstract

The tailoring of metal-oxide interfaces is a powerful approach to enhance the catalytic efficiency of heterogeneous catalysts. However, the function of the metal. oxide interface is still not clearly understood in most catalytic processes. The construction of heterogeneous catalysts with single interface sites would be a straightforward way to reveal the interface effect. In this work, we introduced a simple strategy to synthesize a porous TiO2/Pt/TiO2 sandwich catalyst by atomic layer deposition. All Pt nanoparticles were covered by two porous TiO2 layers in this sandwich structure, creating dominant Pt-TiO2 interface sites. The TiO2/Pt/TiO2 sandwich catalyst shows good catalytic performance in the tandem ammonia.borane decomposition and semihydrogenation of various alkynes with high selectivity and stability. In contrast, the Pt nanoparticles without complete coverage of porous TiO2 layers have a low selectivity in semihydrogenation of alkynes. The sandwich catalyst also exhibits high selectivity in hydrogenation of the -C=O bond of α,β-unsaturated aldehyde. The high selectivity of the TiO2/Pt/TiO2 sandwich catalyst can be ascribed to the electron-rich property of the Pt-TiO2 interface sites, which favor the adsorption of alkyne with electrophilicity but inhibit the overhydrogenation of C=C bonds.

Original languageEnglish
Pages (from-to)6567-6572
Number of pages6
JournalACS Catalysis
Volume7
Issue number10
DOIs
StatePublished - 6 Oct 2017
Externally publishedYes

Keywords

  • Atomic layer deposition
  • Metal-oxide interface
  • Sandwich structure
  • Semihydrogenation
  • Tandem catalyst

Fingerprint

Dive into the research topics of 'Porous TiO2/Pt/TiO2 sandwich catalyst for highly selective semihydrogenation of alkyne to olefin'. Together they form a unique fingerprint.

Cite this