TY - JOUR
T1 - Polyanion-type cathode materials for sodium-ion batteries
AU - Jin, Ting
AU - Li, Huangxu
AU - Zhu, Kunjie
AU - Wang, Peng Fei
AU - Liu, Pei
AU - Jiao, Lifang
N1 - Publisher Copyright:
© 2020 The Royal Society of Chemistry.
PY - 2020/4/21
Y1 - 2020/4/21
N2 - Room-temperature sodium-ion batteries (SIBs) are regarded as promising candidates for smart grids and large-scale energy storage systems (EESs) due to their significant benefits of abundant and low-cost sodium resource. Among the previously reported cathode materials for SIBs, layered transition-metal oxides and polyanion-type materials are considered to be the most attractive options. Although many layered transition-metal oxides can provide high capacity due to their small molecular weight, their further application is hindered by low output voltage (mostly lower than 3.5 V), irreversible phase transition as well as storage instability. Comparatively, polyanion-type materials exhibit higher operating potentials due to the inductive effect of polyanion groups. Their robust 3D framework significantly decreases the structural variations during sodium ion de/intercalation. Moreover, the effect of strong X-O (X = S, P, Si, etc.) covalent bonds can effectively inhibit oxygen evolution. These advantages contribute to the superior cycle stability and high safety of polyanion-type materials. However, low electronic conductivity and limited capacity still restrict their further application. This review summarizes the recent progress of polyanion-type materials for SIBs, which include phosphates, fluorophosphates, pyrophosphates, mixed phosphates, sulfates, and silicates. We also discuss the remaining challenges and corresponding strategies for polyanion-type materials. We hope this review can provide some insights into the development of polyanionic materials.
AB - Room-temperature sodium-ion batteries (SIBs) are regarded as promising candidates for smart grids and large-scale energy storage systems (EESs) due to their significant benefits of abundant and low-cost sodium resource. Among the previously reported cathode materials for SIBs, layered transition-metal oxides and polyanion-type materials are considered to be the most attractive options. Although many layered transition-metal oxides can provide high capacity due to their small molecular weight, their further application is hindered by low output voltage (mostly lower than 3.5 V), irreversible phase transition as well as storage instability. Comparatively, polyanion-type materials exhibit higher operating potentials due to the inductive effect of polyanion groups. Their robust 3D framework significantly decreases the structural variations during sodium ion de/intercalation. Moreover, the effect of strong X-O (X = S, P, Si, etc.) covalent bonds can effectively inhibit oxygen evolution. These advantages contribute to the superior cycle stability and high safety of polyanion-type materials. However, low electronic conductivity and limited capacity still restrict their further application. This review summarizes the recent progress of polyanion-type materials for SIBs, which include phosphates, fluorophosphates, pyrophosphates, mixed phosphates, sulfates, and silicates. We also discuss the remaining challenges and corresponding strategies for polyanion-type materials. We hope this review can provide some insights into the development of polyanionic materials.
UR - http://www.scopus.com/inward/record.url?scp=85084167402&partnerID=8YFLogxK
U2 - 10.1039/c9cs00846b
DO - 10.1039/c9cs00846b
M3 - 文献综述
C2 - 32222751
AN - SCOPUS:85084167402
SN - 0306-0012
VL - 49
SP - 2342
EP - 2377
JO - Chemical Society Reviews
JF - Chemical Society Reviews
IS - 8
ER -