TY - JOUR
T1 - Poly (3, 4-ethylenedioxythiophene) engineered hollow Bi2O3 core-shell architectures for long cycle performance of flexible supercapacitors
AU - Huang, Ying
AU - Wang, Jiaming
AU - Ju, Xiaoyu
AU - Zhang, Shuai
AU - Sun, Xu
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/11/25
Y1 - 2023/11/25
N2 - The booming development of electronic devices has promoted the in-depth research on flexible supercapacitors. The structural design of core@shell can be regarded as an effective method of achieving excellent electrochemical performance and outstanding flexibility of electrode materials. Herein, a special structure of core@shell hybrid Bi2O3-x@carbon fiber@poly (3, 4-ethylenedioxythiophene) (Bi2O3-x@CF@PEDOT) electrode derived from a Bi-metal-organic framework (Bi-MOF) is fabricated by using the electrospinning technique, and using the stabilization, pyrolyzation and polymerization procedures. The amount of Bi-MOF is regulated to obtain an optimized flexible substrate (Bi2O3-x@CF). The free space of the hollow Bi2O3 microrod can effectively alleviate the volume expansion during long cycling processes and further promote ion diffusion. The effective optimizations for the structure and content could significantly improve the conductivity and electrochemical performance of the constructed electrode. The prepared Bi2O3–0.5@CF@PEDOT electrode exhibits a satisfied specific capacitance of 460 F g−1 (1 A g−1) and great cycling stability. The assembled symmetric supercapacitor yields a desired energy density (i.e., 16.4 Wh kg−1) and power density (i.e., 500.34 W kg−1), and remarkable cycling performance (i.e., 99 % capacitance retention after 8500 cycles). Moreover, the excellent flexibility of the device is demonstrated by folding the supercapacitor into different angles and without obvious capacitance loss. This work provides a special structural design method of constructing high-performance flexible electrodes.
AB - The booming development of electronic devices has promoted the in-depth research on flexible supercapacitors. The structural design of core@shell can be regarded as an effective method of achieving excellent electrochemical performance and outstanding flexibility of electrode materials. Herein, a special structure of core@shell hybrid Bi2O3-x@carbon fiber@poly (3, 4-ethylenedioxythiophene) (Bi2O3-x@CF@PEDOT) electrode derived from a Bi-metal-organic framework (Bi-MOF) is fabricated by using the electrospinning technique, and using the stabilization, pyrolyzation and polymerization procedures. The amount of Bi-MOF is regulated to obtain an optimized flexible substrate (Bi2O3-x@CF). The free space of the hollow Bi2O3 microrod can effectively alleviate the volume expansion during long cycling processes and further promote ion diffusion. The effective optimizations for the structure and content could significantly improve the conductivity and electrochemical performance of the constructed electrode. The prepared Bi2O3–0.5@CF@PEDOT electrode exhibits a satisfied specific capacitance of 460 F g−1 (1 A g−1) and great cycling stability. The assembled symmetric supercapacitor yields a desired energy density (i.e., 16.4 Wh kg−1) and power density (i.e., 500.34 W kg−1), and remarkable cycling performance (i.e., 99 % capacitance retention after 8500 cycles). Moreover, the excellent flexibility of the device is demonstrated by folding the supercapacitor into different angles and without obvious capacitance loss. This work provides a special structural design method of constructing high-performance flexible electrodes.
KW - Electrospinning
KW - Flexible supercapacitor
KW - Hollow BiO cores
KW - PEDOT
UR - http://www.scopus.com/inward/record.url?scp=85166246834&partnerID=8YFLogxK
U2 - 10.1016/j.est.2023.108460
DO - 10.1016/j.est.2023.108460
M3 - 文章
AN - SCOPUS:85166246834
SN - 2352-152X
VL - 72
JO - Journal of Energy Storage
JF - Journal of Energy Storage
M1 - 108460
ER -