Pixel-Level Self-Paced Learning for Super-Resolution

Wei Lin, Junyu Gao, Qi Wang, Xuelong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Recently, lots of deep networks are proposed to improve the quality of predicted super-resolution (SR) images, due to its widespread use in several image-based fields. However, with these networks being constructed deeper and deeper, they also cost much longer time for training, which may guide the learners to local optimization. To tackle this problem, this paper designs a training strategy named Pixel-level Self-Paced Learning (PSPL) to accelerate the convergence velocity of SISR models. PSPL imitating self-paced learning gives each pixel in the predicted SR image and its corresponding pixel in ground truth an attention weight, to guide the model to a better region in parameter space. Extensive experiments proved that PSPL could speed up the training of SISR models, and prompt several existing models to obtain new better results. Furthermore, the source code is available at https://github.com/Elin24/PSPL.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2538-2542
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: 4 May 20208 May 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period4/05/208/05/20

Keywords

  • self-paced learning
  • super-resolution
  • training strategy

Fingerprint

Dive into the research topics of 'Pixel-Level Self-Paced Learning for Super-Resolution'. Together they form a unique fingerprint.

Cite this