TY - JOUR
T1 - Photocatalytic Acetylene Hydrochlorination by Pairing Proton Reduction and Chlorine Oxidation over g-C3N4/BiOCl Catalysts
AU - Zhao, Zhi Hao
AU - Wang, Huan
AU - Li, Jinjin
AU - Qiao, Xingyue
AU - Liu, Zhenpeng
AU - Ren, Zhipeng
AU - Yuan, Menglei
AU - Zhang, Jian
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024/10/30
Y1 - 2024/10/30
N2 - Acetylene hydrochlorination is a vital industrial process for the manufacture of vinyl chloride monomer (VCM). Current thermocatalytic acetylene hydrochlorination requires toxic mercury-based or costly noble metal-based catalysts, high temperatures (≥180 °C) and excessive gaseous HCl. Here, we report a room-temperature photocatalytic acetylene hydrochlorination strategy involving concurrent coupling of electron-driven proton reduction (*H) and hole-driven chloride oxidation (*Cl) on photocatalyst surfaces. Under simulated solar light illumination, the developed noble-metal-free g-C3N4/BiOCl photocatalysts show a considerably high VCM production rate of 1198.6 μmol g-1 h-1 and a high VCM selectivity of 95% in a 0.1 M HCl aqueous solution. Even in chloride-rich natural seawater and acidified natural seawater, the VCM production rates of g-C3N4/BiOCl photocatalysts are up to 170.3 μmol g-1 h-1 with a VCM selectivity of 80.4% and 1247.7 μmol g-1 h-1 with a VCM selectivity of 94.7%, respectively. Moreover, with sunlight irradiation and acidified natural seawater, the g-C3N4/BiOCl photocatalysts in a large-scale photosystem retain outstanding acetylene hydrochlorination performance over 10 days of operation. The radical scavenging, in situ photochemical Fourier transform infrared spectroscopy, theoretical simulations, and control experiments reveal that active *Cl and *H play key roles in photocatalytic acetylene hydrochlorination via a possible reaction pathway of C2H2 → *C2H2 → *C2H2Cl → *C2H3Cl → C2H3Cl. With respect to sustainability and low cost, this photocatalytic acetylene hydrochlorination offers excellent advantages over conventional thermocatalytic hydrochlorination technologies.
AB - Acetylene hydrochlorination is a vital industrial process for the manufacture of vinyl chloride monomer (VCM). Current thermocatalytic acetylene hydrochlorination requires toxic mercury-based or costly noble metal-based catalysts, high temperatures (≥180 °C) and excessive gaseous HCl. Here, we report a room-temperature photocatalytic acetylene hydrochlorination strategy involving concurrent coupling of electron-driven proton reduction (*H) and hole-driven chloride oxidation (*Cl) on photocatalyst surfaces. Under simulated solar light illumination, the developed noble-metal-free g-C3N4/BiOCl photocatalysts show a considerably high VCM production rate of 1198.6 μmol g-1 h-1 and a high VCM selectivity of 95% in a 0.1 M HCl aqueous solution. Even in chloride-rich natural seawater and acidified natural seawater, the VCM production rates of g-C3N4/BiOCl photocatalysts are up to 170.3 μmol g-1 h-1 with a VCM selectivity of 80.4% and 1247.7 μmol g-1 h-1 with a VCM selectivity of 94.7%, respectively. Moreover, with sunlight irradiation and acidified natural seawater, the g-C3N4/BiOCl photocatalysts in a large-scale photosystem retain outstanding acetylene hydrochlorination performance over 10 days of operation. The radical scavenging, in situ photochemical Fourier transform infrared spectroscopy, theoretical simulations, and control experiments reveal that active *Cl and *H play key roles in photocatalytic acetylene hydrochlorination via a possible reaction pathway of C2H2 → *C2H2 → *C2H2Cl → *C2H3Cl → C2H3Cl. With respect to sustainability and low cost, this photocatalytic acetylene hydrochlorination offers excellent advantages over conventional thermocatalytic hydrochlorination technologies.
UR - http://www.scopus.com/inward/record.url?scp=85204878802&partnerID=8YFLogxK
U2 - 10.1021/jacs.4c08587
DO - 10.1021/jacs.4c08587
M3 - 文章
C2 - 39302880
AN - SCOPUS:85204878802
SN - 0002-7863
VL - 146
SP - 29441
EP - 29449
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 43
ER -